Identification of Tower Wake Distortions in Sonic Anemometer Measurements during XPIA

KATHERINE MCCAFFREY, <u>PAUL T. QUELET</u>, ADITYA CHOUKULKAR, W. ALAN BREWER, JAMES WILCZAK, STEVEN ONCLEY, DANIEL WOLFE, JULIE K. LUNDQUIST

> American Meteorological Society 22nd Symposium on Boundary Layers and Turbulence Session 16, Contribution 16A.6, 24 June 2016, 4:45 PM

University of Colorado Boulder Aroc

NOAA

Opposing direction booms enable characterization of BAO tower wake

Campbell Scientific CSAT3 sonic anemometers

Tilt correction (Wilczak et al. 2001)

20 Hz data, 2-min WS & 20-min TKE averaging period

Sonic anemometer observations are affected by upstream tower wakes

2-min SE/NW mean wind speed ratios reveal distinct wakes from BAO tower, along with speed-up regions

4

Sonics' 2-min mean wind speed show agreement in free stream regions

20-min SE/NW turbulent kinetic energy (TKE) reveal wider angular swaths of BAO tower wake

50 m sonics' 20-min TKE shows (log) agreement in free stream regions

7

R^2 between sonics for wind speed & TKE vs. wind dir. precisely defines wake edges

Compass summary of wake boundaries shows BAO tower asymmetry

Recall the example wind direction time series

The free stream zones show a consistent sign of difference in wind direction measured from the two sonics

SE-NW wind direction bias varies sinusoidally with wind direction

 $\Delta \theta_{SE \ to \ NW} = 10 \sin(\theta_{SE} - 154) \ (deg)$

Vector representation of tower winds vs. free stream winds shows greatest differences near the perpendicular direction

Sonics MAE % comparison of 2-min WS or 20min TKE increases rapidly if any or nearly all data points are waked

BAO tower wake characterization is vital for successful XPIA data usage

 Wake effect up to 50% wind speed reduction, with adjacent speedup regions up to 5%

BAO tower wake characterization is vital for successful XPIA data usage Wake angular swath wider in TKE than WS

•

BAO tower wake characterization is vital for successful XPIA data usage

Time for Questions...

McCaffrey K., P.T. Quelet, A. Choukulkar, J. Wilczak, D.E. Wolfe, A. Brewer, S. Oncley, J.K. Lundquist, 2016: Identification of Tower Wake Distortions in Sonic Anemometer Measurements. Atmospheric Measurement Techniques. Submitted.

Watershed School (Boulder, CO) 6th & 7th grade MGAUS Radiosonde Launch, BAO Tower During, XPIA 17 Mar 2015 Bill Brown

Photo Courtesy: Bill Brown, NCAR

Extra Slides

Presentation Outline

- I. Sonic Anemometers ("Sonics") Comparisons and Correlations
- II. Independent Identification: Sonic Anemometer vs. Lidar Observations
- **III. Flow Deflection around Tower**
- IV. Time Averaging and Temporal Extent of Wake Impacts
- V. Conclusions

XPIA Lidar Super Site (LSS): WCv2 Vert. Prof. Horiz. Wind

Scanning lidars: VTS ≈ 10m, LSS 130m, south of BAO Tower

Lundquist et al. (2016), BAMS, accepted.

100 to 200 m lidar comparisons agree as independent measurements

Wind Speed

Wind Direction

Ratio of a) NW and b) SE compared to WCv2 and VTS also shows tower wakes

23

Sonic wind direction differences are asymmetric compared to independent WCv2 measurements

Sonic wind direction differences are asymmetric compared to independent VTS measurements

Mean of sonic wind dir. reduces differences.

Increasing averaging interval length decreases prominence of tower wake

References (pg. 1)

- Brower, M. and Bernadett, D. W.: Wind resource assessment: a practical guide to developing a wind project, John Wiley & Sons, 2012.
- Brown, S. S., Thornton, J. A., Keene, W. C., Pszenny, A. A., Sive, B. C., Dubé, W. P., Wagner, N. L., Young, C. J., Riedel, T. P., Roberts, J. M., et al.: Nitrogen, Aerosol Composition, and Halogens on a Tall Tower 530 (NACHTT): Overview of a wintertime air chemistry field study in the front range urban corridor of Colorado, Journal of Geophysical Research: Atmospheres, 118, 8067–8085, 2013.
- Calhoun, R., Heap, R., Princevac, M., Newsom, R., Fernando, H., and Ligon, D.: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 dispersion experiment, Journal of Applied meteorology and climatology, 45, 1116–1126, 2006.
- Cermak, J. and Horn, J.: Tower shadow effect, Journal of Geophysical Research, 73, 1869–1876, 1968.
- Dabberdt, W. F.: Tower-induced errors in wind profile measurements, Journal of Applied Meteorology, 7, 359–366, 1968.
- Fabre, S., Stickland, M., Scanlon, T., Oldroyd, A., Kindler, D., and Quail, F.: Measurement and simulation of the flow field around the FINO 3 triangular lattice meteorological mast, Journal of Wind Engineering and 540 Industrial Aerodynamics, 130, 99–107, 2014.

References (pg. 2)

- Hall, F. F.: The Boulder Atmospheric Observatory and its meteorological research tower, Optics News, 3, 14–18, 1976.
- IEA, I. E. A.: Recommended Practices for Wind Turbine Testing. Part 11: Wind speed measurements and use of cup anemometry, Tech. rep., 1999.
- Kaimal, J. and Gaynor, J.: The Boulder Atmospheric Observatory, Journal of Climate and AppliedMeteorology, 22, 863–880, 1983.
- Kaimal, J., Eberhard, W., Moninger, W., Gaynor, J., and Troxel, S.: Project CONDORS: Convective diffusion observed by remote sensors, Final Report National Oceanic and Atmospheric Administration, Boulder, CO. Wave Propagation Lab., 1986.
- Kelley, C. L. and Ennis, B. L.: SWiFT site atmospheric characterization., Tech. rep., Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), 2016.
- Lira, A., Rosas, P., Araújo, A., and Castro, N.: Uncertainties in the estimate of wind energy production, Tech. rep., Grupo de Estudos do Setor Elètrico do Instituto de Economia da Universidade Federal do Rio de Janeiro, 2016.

References (pg. 3)

- Lundquist, J. K., and 35 coauthors.: Assessing state-of-the-art capabilities for probing the atmospheric boundary layer: the XPIA field campaign, Tech. rep., National Renewable Energy Laboratory, Golden, CO (United States), 2016.
 - Lundquist, J. K., and 38 coauthors: Assessing state-of-the-art capabilities for probing the atmospheric boundary layer: the XPIA field campaign, Bulletin of the American Meteorological Society, submitted.
- Orlando, S., Bale, A., and Johnson, D. A.: Experimental study of the effect of tower shadow on anemometer readings, Journal of Wind Engineering and Industrial Aerodynamics, 99, 1–6, 2011.
- Peña, A., Floors, R., Sathe, A., Gryning, S.-E., Wagner, R., Courtney, M. S., Larsén, X. G., Hahmann, A. N., and Hasager, C. B.: Ten years of boundary-layer and wind-power meteorology at Høvsøre, Denmark, Boundary-Layer Meteorology, 158, 1–26, 2016.
- Stone, R., Augustine, J., Dutton, E., O'Neill, N., and Saha, A.: Empirical determinations of the longwave and shortwave radiative forcing efficiencies of wildfire smoke, Journal of Geophysical Research: Atmospheres, 116, 2011.