

Why We Need to Estimate Sampling Error in Eddy Covariance Measurement?

Wonsik Kim (Institute for Agro-Environmental Sciences, NARO, Japan) and Hyoeng-Ho Seo (Rural Development Administration, Korea)

INTRODUCTION

- Eddy covariance (EC) measurement operates fundamentally over the hypotheses of stationarity, so that averaging problem is an inherent issue in the EC measurement. Therefore, it is valuable to estimate a relative sampling error ε in a classical time averaging length in terms of the performance estimation of EC measurement.
- In classic quality control and quality assurance (QCQA), 1) it is the arbitrary values that the rank of qualities with an integral turbulence characteristic (ITC) and a stationarity, 2) measurement gaps are inevitably increased in accordance with QCQA filtering, and 3) no error information coming from the averaging problem is regarded. If ε represents ITC, it will be a convenient and comfortable parameter for scaling both error and quality of EC measurements.
- The ε will contribute to the investigations to compare vegetation responses in climate change, and to integrate regional or global values of the exchange, as well as to validate model performance or satellite analysis, and to synthesis the spatiotemporal values by data assimilation. Therefore, in consideration of turbulent characteristics the averaging method of EC measurement is to be mediated.

MATERIALS & METHODS

Key governing equations

- Relative sampling error (Kim *et al.* 2011)
$$\varepsilon = \frac{\sigma}{|F|}$$
- Sampling error (Finkelstein and Sims 2001)
$$\sigma = \left[\frac{1}{N} \left(\sum_{p=-m}^m \gamma_{ww}(p) \gamma_{\xi\xi}(p) + \sum_{p=-m}^m \gamma_{w\xi}(p) \gamma_{\xi w}(p) \right) \right]^{\frac{1}{2}}$$
- Weighted average (Kim *et al.* 2015)
$$\bar{F} = \frac{\sum_{i=1}^n F_i}{\sum_{i=1}^n \varepsilon_i^2}$$

Measurement site

Tangerine orchard (33.507883N 126.680908E 81m a.s.l.) in Jeju, Korea

Instrumentation

1. Sonic anemometer: CSAT3, Campbell Scientific, Utah, USA

2. Open-path gas analyzer: LI7500, LI-COR, Nebraska, USA

RESULTS

