Introduction

Usual approaches which aim to recognize events in the stably stratified
atmospheric boundary layer (ABL) assume certain physical processes and
then search for a trace of these in atmospheric time series. However, many

events in atmospheric time series result from yet unidentified physical

processes. A statistical method was recently developed by Kang et al.? to detect
events in noisy time series without assuming any underlying physical processes.

We analyzed this method and applyed it to the SNOHATS dataset which includes long term

Results

The choice of the time window length, which is directly linked to the length of the posible events,
Is so far made subjectively and is based on experience and context. This could be solved by using
a different method which determines the relevant time scales, before applying the event detection
procedure. Another option which was used is a multiscale approach. A multiscale analysis allows a
verifiable choice of the scale, if it cannot be determined in a different way. We analyzed
submesomotions which we definded as motions from 1 to 30 minutes. Figure 5 shows the

results of the multiscale approach.

measurements of turbulent quantities collected in the stable boundary layer.
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Figure 1: Detected events in 6 s averaged temperature
data from all 4 time series
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Description of the Data

The SNOHATS data was collected over the Plaine Morte Glacier in the Swiss Alps in
2006 by the EFLUM laboratory at EPFL. This analysis is based on 3D wind velocity
component, temperature and humidity measurements of 4 sonic anemometers

(5,6,7 and 8) out of 12. We will focus on the wind velocity and temperature dynamics.
Figure 2 shows the set up of the sonics. The analysis was based on four timeseries of 8
hour length that were isolated in a study by Vercauteren and Klein

4. Time series 2 and

4 are characterized by being very stable while time series 1 and 3 are weakly stable.
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Figure 2: Sonic Set Up
Figure 3: SNOHATS dataset side view of the 12 sonics array

Description of the Method

Goal: To separate nonstationary turbulence events from noise in a time series

Details: By using a sliding window with predefined length, subsequences are obtained.

Figure 4 shows the order in which the tests are applied to each subsequence.
First the Philip

Otherwise the noise test is performed after the Philip Perron test.

Before starting the noise test, the type of noise has to be chosen. Stationa
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Main assumption: Background noise is always present in the time series and events are seperated by noise.

Is applied to each subsequence. The event detection is performed on overlapping sequences rather than
on seperated blocks.To seperate events from noise, three steps are performed on these subsequences.

Perron (PP) test is applied to the subsequence and it checks if the subsequence is stationary.
If it is stationary, according to the Philip Perron test, the Zivot and Andrews (ZA) test is performed.

Events are defined as those subsequences which are significantly different from pure noise.

Does ¥3(t) have a structural break
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M M WM Figure 5: Multiscale approach: The lines show the time periods recognised as events for different averaging times ranging from

The results point to a large sensitivity of the method to the scale at which it is applied.

In time series 4 the detected events in the higher averaged data tend to be more to the beginning of the
time series. Contrary, in time series 2 they are more evenly distributed over the whole time period.
It is noticable that the weakly stable time series 1 and 3 have shorter and less events than the
very stable time series 2 and 4. In general, the 6 s averaged data is a sensible choice because
the detected events from the 6 s averaged data overlap the most with events from lower
and higher averages. The following figure gives examples of possible events.
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Conclusions

To check if there is a relation between mean
| wind speed and wind direction we look at the
J‘v wind roses for all time series (Figure 6).
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The colour shows the wind speed and the length shows the frequency of a wind
direction. Based on the wind rose plots we can conclude that in time series
2 and 4 the mean wind is slow while in time series it is faster. The wind
direction is more stable in time series 2, and variable in cluster 4
mainly for slow wind events.

«In the two very stable time series there was a higher number of nonstationary events detected which were

The event detection method

four measurements.

which it is applied.

also longer and the mean wind was slower. Contrary in the weakly stable time series there was a lower number
of detected nonstationary events and they were shorter. The mean wind for these time series was higher.

The method was determined to give reliable results because we were able to compare the results from the
measurements of one sonic with the results from three neighbour sonics. Most events were detected in all

Limitations: The results from the event detection method by Kang et al.? is sensitive to the scale at

Solution: A multiscale approach is an option to work around this scale dependency. In general,

ry turbulence and red reasonable output.

noise can be well represented by an AR(1) process. Hence, we used red noise.

)

\ Scaling Cascades in Complex Systems

urbu‘IEng:e and Interaction with Submesomotions in the Stable Boundary Layer, Journal of the atmospheric sciences 72(4): 1504—-1517, doi: 10.1175/JAS-D-14-0115.1

the multiscale approach is a good way to identify which average and time window gives the most
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