

MPAS Atmospheric Boundary Layer Simulation under Selected Stability Conditions: Evaluation using the SWIFT dataset

Rao Kotamarthi, Yan Feng, and Jiali Wang Argonne National Laboratory

&

MMC Team

Motivation: Bridging the scales from Mesoscale to LES

The global grids show (left) a uniform 1/8th(~12km) degree global grid with refinement to 1/8th degree

New observations & modeling techniques needed (~10-3km)

Parameterized Physics (>10 km resolution) Gray Zone (no clear path for dealing with the transition

zone)

Resolved Physics (< 3km resolution)

Objectives

- Interest in MPAS: Nesting vs Refinable Mesh:
 - The scale-down ratio of 1:3 recommended widely used for WRF
 achieves a large refinement in resolution by using a number of nested domains but introduces numerical stability and convergence problems at each of the nesting boundaries.
 - A newer dynamical core with unstructured mesh (MPAS: Model for Prediction Across Scales) has been tested over the last few years, and a version of the MPAS model implemented with WRF physics is now available.
 - The nest down options provided by MPAS could likely be superior to that currently available with WRF
 - We initiated this work to evaluate the suitability of using MPAS for reaching higher spatial resolutions (< 3 km) for mesoscale phenomena.
- TEST CASE: Investigate the capability of WRF and Model for Prediction Across Scales (MPAS) models under various configurations to simulate an observed neutral boundary layer case

SWIFT Site (Lubbock, TX)

Atmospheric Stability (Case Studies)

WRF Simulated Potential Temperature Profiles

WRF Setup

Model Setup

- YSU PBL scheme
- NCEP Boundary and Initial condition
- 80 vertical layers
- RRTM radiations physics

WRF- nudging, 3DVAR

Δ

Model Prediction Across Scales (MPAS)

15 km global grid (atmospheric model)

Simulations: Month of August, 2012 Output size: 500 Gb /day

Case selection based on the weather conditions (NOAA daily weather maps)

August 17th, 2012 (7 AM)

August 18th, 2012 (7 AM)

Wind Flow at 5 km

Neutral Case: Wind Profiles from two WRF configurations: WRF vs WRF-3DVAR

m/s

Comparison of Wind Profiles from MPAS vs WRF-3DVAR

m/s

Neutral Case: Potential Temperature Profiles from two WRF configurations: WRF vs WRF-3DVAR

Κ

Κ

Comparison of Potential Temperature Profiles from MPAS vs WRF-3DVAR

Κ

Κ

Wind and Potential Temperature Profiles from WRF-LES

Neutral Case: Planetary Boundary Layer Height Comparison of WRF, WRF-3DVAR, and MPAS

Comparison of Sensible Heat Flux (W m⁻²) from WRF-3DVAR vs MPAS

-150

30°N

105°W 104°W 103°W 102°W 101°W 100°W 99°W

Longitude

36°N

35°N

34°N

33°N

32°N

31°N

98°W

36°N

35°N

34°N

33°N

32°N

31°N

30°

500

450

400

350

300

250

200

150

100

50

0

-50

-100

-150

500

450

400

350

300

250

200

150

100

50

0

-50

-100

-150

105°W 104°W 103°W 102°W 101°W 100°W 99°W

Longitude

-15

30°N

30°N

105°W 104°W 103°W 102°W 101°W 100°W 99°W

Longitude

Comparison of Latent Heat Flux (W m⁻²) from WRF-3DVAR vs MPAS

Conclusions and future work

- Surface heat fluxes calculated by WRF and MPAS are similar for the selected neutral case
- Boundary layer vertical profiles of wind speed calculated for the neutral case with MPAS were similar to the WRF meso-scale models
- WRF observationally nudged wind profiles with initialization the hour before produced the best comparison to the observed winds
- Potential temperature profiles for all three cases show a neutral profile at the time when the observations were made.
- WRF 3D-VAR and LES produced the closest reproduction of the observations
- The PBL heights calculated by the three models differ by several hundred meters during the daytime but show similar diurnal transition
- Higher vertical resolution for MPAS most likely will help.
- Data volumes from the MPAS model at spatial resolution of 15 km and higher will be a problem.
- Very few plotting and analysis tools are useful for handling this amount of output as we will need parallel processing tools (e.g. paraview).

Acknowledgements

- DOE NERSC Computing facility for providing the computing resource
- DOE EERE WWTPO Program for funding
- The entire MMC team lead by Susan Haupt (NCAR)