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1 Introduction

Mesoscale models, such as the Weather Research
and Forecasting (WRF) model, are increasingly be-
ing used for high-resolution simulations. A grid
nesting framework, which uses multiple telescoping
grids of increasing resolution, provides the ability
to pass information across scales. Terrain-following
coordinates, used by WRF and other mesoscale at-
mospheric models, have historically worked well,
as fine-scale details of the topography are not re-
solved on the coarse grid, and the maximum terrain
slope is small. As grid resolution increases, fine-
scale terrain is represented on the grid, along with
increased terrain slopes, posing a challenge to the
traditional terrain-following coordinates. In regions
of very steep terrain, the native terrain-following co-
ordinates used in the WRF model become highly
skewed, resulting in large numerical errors.

An immersed boundary method (IBM), a non-
conforming grid technique, was recently imple-
mented into the WRF model [Lundquist et al. (2010,
2012)]. The method alleviates numerical errors as-
sociated with steep terrain slopes, and allows sim-
ulations over arbitrarily complex terrain. The WRF-
IBM model uses a non-conforming grid with the ter-
rain boundary immersed within the grid. Boundary
conditions are set through interpolation procedures
for grid cells intersected by the immersed surface.
The WRF-IBM model has been previously tested
for flows over urban and mountainous terrain using
a no-slip bottom boundary condition in Lundquist
et al. (2010, 2012).

The WRF-IBM model provides the framework
and ability to produce high-resolution simulations
over complex terrain and urban areas using non-
conforming coordinates, however, the previously
developed no-slip boundary condition is inappropri-
ate for the coarse resolutions generally used by at-
mospheric models. Here, we extend WRF-IBM to
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include a boundary condition which parameterizes
surface stresses in the unresolved surface layer us-
ing Monin-Obukhov (M-O) similarity theory. We ini-
tially consider only neutral stability, in which case
M-O theory simplifies to the commonly known "log-
law”, given in equation 1.
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In this equation, U is the wind speed, u. is the fric-
tion velocity, k£ is the Von Karman constant, z is
the height above the surface, and z, is the surface
roughness length.

Methods for combining the log-law with the im-
mersed boundary method currently exist in the lit-
erature [Choi et al. (2007); Chester et al. (2007);
Anderson (2013)]. We implemented several of
these methods in WRF, following the implemen-
tation as closely as possible (though there are
slight differences in the implementation). Addition-
ally, we added a method for using the log-law with
WRF’s native terrain-following coordinate, a bound-
ary condition treatment commonly applied in ide-
alized large eddy simulations (LES). This allows
the surface stress to be parameterized with a sur-
face roughness length scale zy, facilitating the com-
parison of results from simulations using terrain-
following and IBM coordinates.

While most of the IBM methods worked well for
flow over flat terrain, by matching the WRF solu-
tion with terrain-following coordinates, all of the IBM
implementations from the literature introduced inac-
curacies over sloped terrain at the resolutions used
here. In this work, a new IBM boundary condition is
additionally developed, which specifies both a ve-
locity boundary condition and shear stresses in ac-
cordance with similarity theory. In initial tests, this
new IBM implementation resulted in the correct ve-
locity profiles for flow over sloped terrain. This pa-
per describes implementation of existing IBM meth-
ods, as well as the new method in WRF-IBM. Sim-
ulation results from both the existing and the newly
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developed method are presented for LES with the
Smagorinsky turbulence closure over both flat ter-
rain and for an idealized valley test case. This work
represents the first steps in implementing and test-
ing a new surface boundary condition in WRF-IBM,
which enables simulations over complex, mountain-
ous terrain.

2 Background

2.1 Immersed boundary method

The immersed boundary method was first used to
simulate blood flow through the valve of a heart [Pe-
skin (1977)]. The influence of the immersed bound-
ary acts as an additional body force Fj, in the mo-
mentum equation, given in equation 2.

%—Itj +U-VU=—-aVP+uVU+F, (2
The body force is zero when it is far away from the
boundary and has a non-zero value when it is close
to boundary.

The immersed boundary method used in this
work uses the method of direct forcing, as first pre-
sented in laccarino and Verzicco (2003). With direct
forcing, the velocity is directly modified at the cells
near the boundary to enforce the boundary condi-
tion, eliminating the need for calculation of the body
force term in the numerical algorithm. With WRF-
IBM, first, we need to identify cells that are cut by
the immersed boundary, which are cells that include
both fluid and solid nodes. On the staggered grid
used by WRF, cut cells must be determined for each
variable for which a boundary condition will be im-
posed. Then, an interpolation method is used to
determine the forcing needed to impose the desired
boundary condition. Several different interpolation
methods have been employed, ranging from linear
interpolation to inverse distance weighting schemes
[laccarino and Verzicco (2003)]. Finally, the value of
the variable at points near the immersed boundary
are set, which enforces the desired boundary con-
dition. Further details of the IBM implemenation in
WRF are given in Lundquist et al. (2010, 2012).

2.2 WRF’s boundary condition

In WRF, surface stresses are set using equation 3
and equation 4.

Tsfe.. = Ca|U|U (3)

Tsfe,. = Ca UV (4)

In this equation, (7.sc,.,7sfc,.) are the surface
shear stresses in the x and y directions, Cj is the
drag coefficient, and |U| denotes the wind speed.
There are several ways to calculate C; in WRF. It
can be specified directly as an input in the namelist,
or M-O theory can be used to calculate u, in the
land surface model in WRF. Additionally, we added
a new equilibrium stress model option that calcu-
lates the drag coefficient based on a specified sur-
face roughness parameter z; and the log law. In
this formulation, the coefficient of drag is given by

equation 5.
k; 2
Ca= (1 B ) (5)
0%

Surface stresses are imposed in the vertical di-
rection in native WRF coordinates, rather than in the
surface normal direction. In addition to setting the
shear stress at the surface, WRF also implements
a kinematic boundary condition for the velocity. The
set of equations used for the kinematic boundary
condition are given by (6) and (7), where 7 is the
velocity of the vertical coordinate, h is the terrain
height, and (u, v, w)s., s are the Cartesian compo-
nents of velocity at the surface.

=0 (6)
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This set of equations specifies no flow in the surface
normal direction.

3 IBM boundary condition implementations

Four IBM methods are implemented in WRF here.
These include three existing IBM methods from
the literature that use the log law in combination
with IBM [Choi et al. (2007), Chester et al. (2007),
and Anderson (2013)], as well as our new IBM
method. The first method is the velocity recon-
struction method in Choi et al. (2007), where the
velocity is reconstructed at the first fluid node as-
suming there is a logarithmic profile near surface.
The second method is the shear stress reconstruc-
tion method in Chester et al. (2007). In this method,
several layers of shear stress near the immersed
boundary are modified according to the log law.
Nodes internal to the terrain are set to have zero ve-
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Figure 1: Velocity reconstruction IBM

locity. The third method, which is called the canopy
method, is based on the canopy stress model in
Anderson (2013). A body drag force is imposed
as a momentum sink at cells near the surface. In-
ternal nodes are also set to have zero velocity. In
the fourth, new method, the log law is enforced by
setting boundary conditions for both velocity and
stress. Velocity is set at a ghost point just un-
derneath the terrain, while shear stress is recon-
structed at multiple points above and below the ter-
rain. We test all four methods by simulating flow
over flat terrain and an idealized V-shaped valley,
and comparing the results to those using WRF’s na-
tive terrain-following coordinate.

3.1 Velocity reconstruction method

In this method, the velocity is reconstructed at the
first fluid node outside of the immersed surface, as
represented by the open circle in figure 1. Fad-
lun et al. (2000) used linear interpolation between
a point in the fluid and a no-slip boundary condition
at the surface to reconstruct the velocity at a layer
of fluid points outside of the immersed surface.

Choi et al. (2007) suggested a similar method
where the log-law is used to reconstruct the velocity
at the first fluid node. Assuming that multiple nodes
reside within the logarithmic layer, and that u. is
constant within this region, equation 8 can be used
to calculate the velocity at the first fluid node based
on the velocity at the second fluid node above the
surface.
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Figure 2: Shear stress reconstruction IBM

In z
Uy =Uy—20 (8)
n

Figure 1 illustrates the method as implemented
in WRF-IBM. Here, velocity is reconstructed at the
first fluid node (U;) above the immersed boundary
for each cut cell. An interpolation point (U;) is found
based on projecting the surface normal vector out-
ward until it intersects a cell containing only fluid
nodes, so that U; and U; are normal to the im-
mersed boundary. This scheme then uses equation
8 to calculate the value of U; at each cut cell, where
U, and z- take values from the interpolated point.

3.2 Shear stress reconstruction method

The shear stress reconstruction method of Chester
et al. (2007) is a scheme where shear stress is
reconstructed at multiple grid points in the vicin-
ity of the immersed boundary. Shear stress val-
ues on the immersed surface are calculated ac-
cording to the log-law, using equation 3 and equa-
tion 4. Shear stress values within a defined dis-
tance, external to the immersed boundary, are set
to the surface stress value, while stress values inte-
rior to the immersed boundary are extrapolated us-
ing linear interpolation from the surface value and
a value outside of the band of nodes being recon-
structed. Velocity is set to zero interior to the im-
mersed boundary, and is not treated outside of the
immersed boundary.

The shear stress reconstruction method, as im-
plemented in WRF-IBM, is illustrated in figure 2.



Surface stresses are reconstructed at three layers
(open red circles in figure 2), which includes a ghost
point just below the terrain (labeled 7,), the point
below the ghost point (labeled 7,_;), and the point
above the ghost point (labeled 7,.1). The surface
stress is found by equation 3 and equation 4 in com-
bination with equation 5. For each shear stress
reconstruction point, an interpolating point (7;) is
found based on projecting the surface normal out-
ward until it intersects a cell containing only fluid
nodes. An interpolation method is used to calculate
the value of 7;. This method then uses linear ex-
trapolation to set 7,. The values of 7,_; and 7,4
are calculated using the same method, but an inde-
pendent image location is found for each point (not
shown in figure 2). As in the method of Chester
et al. (2007), the velocity is set to zero at nodes
internal to the terrain, and not treated outside of
the terrain. These points are indicated by solid blue
points in figure 2.

3.3 Canopy method

In Anderson (2013), the immersed boundary
method includes a canopy model to simulate flow
over obstacles. In this method, nodes internal to the
immersed boundary are set to have zero velocity. A
canopy stress model is used to impose a momen-
tum sink for cells near the surface. Cells where the
stress model is applied are determined based on
surface geometry, and can include single or mul-
tiple points, interior and exterior to the immersed
surface. The momentum sink is a body force added
to the equation for conservation of momentum, and
is given by equation 9.

fla,t) = 5 CaA(@) U] U ©

Here, A(x) is the frontal (impinging) area of the im-
mersed surface. In the streamwise direction, the
frontal area is equal to Axg[%mxl, where z; and
xo represent the streamwise and transverse direc-
tions, grid spacing is represented by Az, and Az,
and h is the height of the immersed terrain. Simi-
larly, Aa;l[g%hz]Axg is the frontal area for flow in the
transverse direction. When the force in equation 9
is divided by cell volume (Az; AxyAxs), equation 10
results, which can be used directly in the equation
for conservation of momentum.
U
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Figure 3 illustrates the canopy method as imple-
mented in WRF-IBM. Velocity at interior nodes, rep-
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Figure 3: Canopy method IBM

resented by the closed red circle labeled U, are
set to zero. The body force is added at the point
labeled U;, but can also be applied at additional
points, dependent on the terrain geometry. The al-
gorithm determining points at which the body forces
are applied is identical to that presented in Ander-
son (2013).

3.4 Ghost-cell velocity and shear stress recon-
struction

While several IBM implementations using the log-
law have been proposed in the literature, and imple-
mented here, it was found that they could not recre-
ate the WREF solution for flow over sloping terrain. A
new IBM implementation, capable of matching the
WREF solution for flat and sloped terrain, is devel-
oped here. Of the IBM implementations presented
here, this method is most similar to WRF’s bound-
ary condition, as it requires both reconstruction of
the velocity and stress fields in the vicinity of the
immersed boundary. As mentioned in section 2.2,
WRF implements it's boundary condition by setting
the shear stress according to M-O theory, as well
as a kinematic boundary condition for velocity.

The new IBM algorithm is illustrated in figure 4,
where the treatment of the velocity field is shown in
the left panel. Like the velocity reconstruction meth-
ods of Choi et al. (2007), we use the log-law (for
neutral stratification) to enforce a logarithmic veloc-
ity profile near surface. However, unlike the existing
method, where velocity is reconstructed at a fluid
node, velocity in the new method is reconstructed at
a ghost point interior to the terrain. First, ghost cells
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Figure 4: New ghost-cell velocity and shear stress reconstruction IBM algorithm. The algorithm for velocity
is depicted in the left panel, and the shear stress algorithm is depicted in the right panel.

(Uy) are identified below the immersed boundary at
each cut cell. Then two interpolation points (U;; and
U,2) are found based on projecting the surface nor-
mal vector outward from U, a distance of 0.5Az and
1.5Az from the immersed surface. All three points
Ug, Us1, and U, are aligned in the surface normal
direction to the immersed boundary. Equation 8 is
used to calculate the value of U;;, where the value
of U;s is calculated via interpolation. Linear extrap-
olation, using the values of U;; and Uj,, is used to
calculate U,,.

The right panel of figure 4 illustrates the shear
stress reconstruction method implemented in this
WRF-IBM method. Three layers of shear stress are
reconstructed near the immersed boundary, identi-
cal to the shear stress reconstruction method de-
scribed above in section 3.2.

4 Validation

In this section, we examine the implementation of
the four log-law boundary conditions at the im-
mersed boundary using two test cases. The first
is a pressure-driven neutral atmospheric boundary
layer over flat terrain, and the second is an ideal-
ized V-shaped valley. We additionally present re-
sults using terrain-following coordinates. The WRF
model is run in an idealized mode, such that atmo-
spheric processes other than turbulence are not pa-
rameterized. This allows us to verify the new sur-
face boundary condition at the immersed boundary
without adding the complexity of additional atmo-

spheric processes, although IBM has been coupled
to atmospheric parameterizations [Lundquist et al.
(2010)].

4.1 Flat terrain simulations

Simulations are carried out for a neutral atmo-
spheric boundary layer over terrain located at a
height of 100 m using the four IBM methods and
terrain-following coordinates. For each of the four
IBM methods, we tested four different grids, shown
in figure 5. For each of the four grids, the im-
mersed boundary is held at a constant height of
100 m, while the height of the domain bottom is
modified. This leads to the grid aligning with the
immersed boundary in multiple configurations. Due
to the staggered grid used by WREF, in grid 1 the im-
mersed boundary aligns with w velocity points, and
grid 3 aligns with « points, while grids 2 and 4 are
aligned half way between staggered nodes. This
leads to the horizontal velocity points being various
distances above the immersed boundary ranging
from 0 to Az, and tests the robustness of our IBM
algorithm, as the different grids allow careful test-
ing of the interpolation method with all possible grid
staggering configurations.

In this test case, the domain height is located at
1.5 km, and 71 vertical grid points are used in the
terrain-following case, while 73 vertical points are
used in the IBM cases to allow for points below the
terrain. In both setups a constant vertical grid spac-
ing of Az = 20 m is used. Although the Smagorin-
sky turbulence closure is used in this case, the
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Figure 5: Four different grid setups for the IBM flat terrain case

initialization is not seeded with perturbations, and
therefore the solution remains perfectly horizontally
homogeneous (i.e. turbulence is not resolved). The
grid spacing in the horizontal is (Axz, Ay) = (90, 90)
m, and the simulation uses three grid points in each
horizontal direction. The algorithm has been tested
with a larger number of horizontal grid points, how-
ever, as the solution is horizontally homogeneous,
the solution is independent of the number of grid
points used in the horizontal.

All cases are initialized with a neutral and dry
sounding with a 10 m/s wind in the x-direction. The
surface is set to have a constant surface roughness
of zo = 0.1 m, and a pressure gradient drives the
flow in the x-direction only. Periodic boundary con-
ditions are used for the lateral boundaries, and the
total integration time for this case is 4 hours.

Figure 6 shows instantaneous u velocity profiles
at T = 4 hours for terrain-following WRF and the
four IBM implementations. Simulations are per-
formed for each IBM method on the four different
grid setups, but we only show the results from grid
2 in figure 6, as results from all grids appear simi-
lar. The velocity profiles for the WRF and WRF-IBM
simulations compare well for all methods except the
canopy method for all four grid setups.

4.2 Idealized valley simulations

Next, the WRF-IBM boundary conditions are tested
for an idealized V-shaped valley case. The terrain
and grid are shown in figure 7. The valley ter-
rain is defined using the following equation h; =
offset + slope * | zq;5¢|, where the bottom of the valley
is offset = 100 m, the valley slope is slope = Z,
which creates the 12 degree angle of the valley
walls , and x4, is the distance from the center of
the valley.

The hill slope is relatively small (12 degrees), so
that the simulation results from WRF are still rea-
sonable using terrain-following coordinates. With
such a mild slope, and the chosen grid resolution,
the errors due to the terrain-following coordinate
should be small, thus allowing use of the WRF re-
sults for validation of the IBM boundary conditions.

In this idealized V-shaped valley test case, the do-
main height is located at 1.5 km, and 71 vertical
grid points are used for the terrain-following grid,
while 76 vertical points are used for the IBM grid
to allow for points below the terrain. In both se-
tups a constant vertical grid spacing of Az = 20
m is used. The grid spacing in the horizontal is
(Az, Ay) = (90,90) m, and the simulation uses 20
grid points in each horizontal direction.
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Figure 6: Flat terrain results: u velocity profiles for WRF-IBM .vs. WRF at 7' = 4 hours

As with the flat terrain case, the valley case is
initialized with a neutral, dry sounding with a 10 m/s
wind in the x-direction. The surface is set to have
a constant surface roughness of zo = 0.1 m, and a
pressure gradient drives the flow in the x-direction
only. The Smagorinsky turbulence closure is used,
and periodic boundary conditions are used for the
lateral boundaries. The total integration time for this
case is 4 hours.

Figure 8 shows the instantaneous profiles of u
velocity at T = 4 h for several different locations
along the span of the valley for WRF and WRF-
IBM with the velocity reconstruction method [Choi
et al. (2007)]. Although the Smagorinsky turbulence
closure is used, turbulence remains unresolved at
T = 4 hours, and therefore we are able to com-
pare the WRF and WRF-IBM solutions directly. The
surface velocity for the WRF-IBM velocity recon-
struction method is too small compared to the so-
lution using terrain-following coordinates. Figure 9
and figure 10 show the same profiles of u veloc-
ity for WRF-IBM using the shear stress reconstruc-
tion method [Chester et al. (2007)] and the canopy
method [Anderson (2013)]. The near-surface veloc-
ity is also too small for both of these two methods
compared to WRF.

In both the shear stress reconstruction method
and the canopy method, velocities for internal
nodes below the immersed boundary are all set to
zero. During our test cases, we noticed that these
zero velocity internal points play a important role
in creating smaller surface velocities in figures 9
and 10. Setting velocities for the internal nodes to
be zero is commonly used in many traditional IBM
methods, as theoretically, the velocities inside a
solid obstacle are zero. In our numerical implemen-
tations, we found that setting zero velocity at inter-
nal nodes is not an appropriate choice, as it affects
the surface velocity. In our new ghost-cell velocity
and shear stress reconstruction method, instead of
setting the velocity at internal points directly to zero,
we modified the velocity at ghost points based on
the log-law.

Figure 11 shows the instantaneous u velocity pro-
file at T' = 4 h for the same locations along the span
of the valley for WRF and WRF-IBM with the newly
developed ghost-cell velocity and shear stress re-
construction method described in section 3.4. The
velocity profiles for the WRF-IBM model with this
new IBM method match well with the native WRF
result for this idealized valley case.
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5 Summary and conclusion

The results above indicate that the velocity recon-
struction method [Choi et al. (2007)] and the shear
stress reconstruction method [Chester et al. (2007)]
perform well over flat terrain, but they produce ve-
locities that are too small near the surface over the
idealized valley (figures 8 and 9) when compared to
the reference solution which uses terrain-following
coordinates. The canopy method [Anderson (2013)]
produces smaller velocities near the surface for
both flow over flat terrain (figure 6) and over the
idealized valley (figure 10) in comparison to the ref-
erence solution. In contrast, the newly proposed
IBM implementation in section 3.4, is able to repro-
duce the results of WRF using terrain-following co-
ordinates as seen in figures 6 and 11 for both flat
and mildly complex terrain. The newly developed
ghost-cell velocity and shear stress method still re-
quires further testing. Additional test cases will in-
clude flow over steeper idealized hills and flow over
real topography, as well as non-neutral atmospheric

stability conditions.
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Figure 8: Idealized valley results: u velocity profiles for WRF-IBM (velocity reconstruction method) .vs. WRF
at T = 4 hours
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Figure 10: Idealized valley results: u velocity profiles for WRF-IBM (canopy method) .vs. WRF at T = 4
hours
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