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1. INTRODUCTION 

Concerning that a large inland wind farms are often constructed over 

heterogeneous surfaces such as mountainous areas, it is critical to understand 

the significance of variability of intra-farm wind flows as they influence power 

production. In the research, we studied the spatial and temporal characteristics of 

wind speed measurements by nacelle anemometers at 274 wind turbines in a 

large wind farm of an area of about 20 km by 20 km. Our hypothesis is that spatial 

variability of wind speed in a wind farm on scales ≤ O(10 km) is associated with 

temporal variability on scales ≤ O(10 h) [Manwell et al.,2010; Orlanski,1975; 

Stull,1988]. We also discuss the intra-farm spatial and temporal variability of wind 

speed in terms of the accuracy of wind power production est imation. 

2. DATA 

We used wind speed data measured from 3-cip nacelles anemometers installed 

on the wind turbine nacelles in side of a large wind farm whose area covers 

about 20 km by 20 km described in Figure 1 indicating that turbines are situated 

in a mountainous region. The wind farm contains 274 wind turbines and 221 out 

of them have 69 m hub height and the rest have 80 m [Liu et al., 2011; Wan et 

al., 2010; Zhang et al., 2014]. The data are 15-minute averaged time series from 

1 January to 30 November 2012. As Table 1 described, the percentage of the 

missing points out of total 11-month time series is about 14 % which is the 

obstacle to use whole data set. For seasonal analyses we divided from March to 

May as Spring, from June to August as Summer, from September to November 
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as Fall and from January to February (because we were not provided December 

data) following convention.  Table 1 also indicates that spring and fall has much 

more missing points than summer and winter in general. For selecting time series 

data used, 11-month time series are separated into 44 week periods and with the 

criteria of selecting the periods whose longest consecutive missing length is less 

than or equal to 3 hours, total 10 weeks were selected. Each 5 weeks are from 

winter and summer seasons and their statistics are described in table 2. Figure 2 

indicates different main wind directions between in winter and summer in the 

wind farm from the meteorological tower A09 depicted in Figure 1.  

3. ANALAYSUS RESULTS 

3.1. Dominant time scales of wind speed fluctuations 

To investigate the temporal characteristics of the seasonal intra farm wind speed, 

we applied the Fourier analyses on the selected 1-week time series with 15-

minute interval of each 5 weeks from winter and summer which its time scale on 

spectrum would be from half an hour (due to Nyquist frequency) to 168 hours. 

Because Fourier spectral analysis requires the complete series of the data, we 

applied interpolation methods on missing points in selected time series as 

shown. Figure 3 (b) indicates that the type of the interpolation method doesn’t 

affect the result of Fourier spectrum much especially in terms of spectral peaks. 

Individual gray lines in Figure 3 (a) indicates Fourier spectra from each wind 

turbines in one week and the solid blue lines and error bars the average and the 

standard deviation of them respectively. Figure 4 shows the averaged spectra for 
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winter and summer. The blue solid line and the error bars indicates the average 

of five 1-week spectra and the standard deviation of them for each season. From 

Figure 4, we can see that diurnal cycle is the dominant scale for wind flow during 

summer while the larger scales of 40 to 50 hour dominate winter wind flow. 

3.2. Spatial correlations between the intra-farm time series 

In order to define the spatial variability of wind flow in side of the wind farm, we 

calculated the Pearson’s product-moment correlation coefficient,  𝜌(𝑀𝑟 , 𝑀𝑖), 

between the time series from the reference turbines, 𝑀𝑟  and the i th wind 

turbine, 𝑀𝑖 at each week: 

                𝜌(𝑀𝑟, 𝑀𝑖) =
𝑐𝑜𝑣(𝑀𝑟,𝑀𝑖)

𝜎𝑀𝑟𝜎𝑀𝑖

 ,                         (1) 

where cov is the covariance between 𝑀𝑟  and 𝑀𝑖, and 𝜎 the temporal standard 

deviation of 𝑀𝑟  or 𝑀𝑖 over the week. The reference turbines at each week are 

depicted in Table 1.  

Figure 5 shows the correlation coefficient, 𝜌(𝑀𝑟 , 𝑀𝑖), with distance from the 

reference turbines for winter (a) and summer (b). For both winter and summer, 

correlation coefficients with distance decrease, but the slope is much steep for 

summer than winter. The decrease with distance could be due to local 

heterogeneity between two turbines and we can say that steeper slope of 

decrease can be caused by more spatial variability. For the reasons, wind flows 

during summer in this wind farm could be more spatially variable than those 

during winter. 

In Figure 7, temporal low-pass filter, which was descried in Figure 6, was applied 

for each five 1-week time series for both winter and summer and the correlation 

coefficients, 𝜌([𝑀𝑟]𝑃, [𝑀𝑖]𝑃), with low-pass filtered time series  [𝑀𝑟]𝑃 

and [𝑀𝑖]𝑃 were computed with distance. With the cut-offf scales of 3, 6, 12 and 

24 hours, spatial correlation coefficients are improved with increasing temporal 

cut-off scales. It indicates that spatial variability of wind flow in a wind farm on 

scales ≤ O(10 km) is related with temporal variability on scales ≤ O(10 h) which 

we hypothesized in the instruction. Especially in Figure 7 (b), correlation 

coefficients are not fully recovered even after 24-hour scale low-pass filter. It 

indicates that there are some non-linearity existing in wind flow in summer which 

cannot be removed by linear low-pass filter.  

3.3. Probability density functions (PDFs) of temporal velocity increments 

To investigate the temporal change of the wind speed time series from the 

nacelle anemometers, we applied the probability density functions of velocity 

increments on each selected 1-week period as shown in Equation (2) below: 

𝛿𝑀(𝜏) = 𝑀(𝑋𝑖 , 𝑡 + 𝜏) − 𝑀(𝑋𝑖 , 𝑡),       (2) 

Figure 8 shows the PDFs of velocity increments with 𝜏 

= 15 minute for each week during winter as well as winter. And Figure 9 indicates 

the PDFs of velocity increments for winter and summer with 𝜏 = 15 minute, 30 

minute, 3 hour, 6 hour, and 12 hours. PDFs of velocity increments in both Figure 

8 and 9 presents heavier tails in negative side relative to Gaussian distribution 

and that negative skewness is more significant on summer. As 𝜏 increases, the 

PDFs become closer to Gaussian, while those still show the negative skewness 

up to 𝜏 ≤ 3 h. The results indicate that rapid and sudden decreases of wind 

speed, which is usually called as the ramp-down are more frequent than ramp-up 

events over a time period ≤ 3 h, which is more significant during summer than 

during winter. 

3.4. Diurnal variation of wind speed 

Figure 10 presents the intra-farm spatial variability of wind speed as a function of 

the time of a day, using all the one-day time series in side of the wind farm from 

the thirty-five days of each selected five weeks for winter and summer. First, for 

each day we averaged wind speed over the wind farm along the diurnal cycle: 

〈𝑀〉 indicates the spatially averaged wind speed over a whole wind farm with 

diurnal cycle and {〈𝑀〉} is calculated by averaging the time series of the 

spatially averaged wind speed over the thirty-five days for each season. Also  the 

standard deviation 𝜎𝑠 of all the time series over the wind farm from the wind 



3 
 

speed M and temporal average of the spatial standard deviation with thirty five 

days, {𝜎𝑠}, are calculated to investigate  the intra-farm spatial variability of the 

diurnal variation of wind speed for each season as shown in Fig. 10. It shows the 

intra-farm variability is more significant in the nighttime than in the daytime and 

when the mean flow becomes stronger, the spatial variation of smaller-scale flow 

would decrease. Conversely, when the mean flow becomes weaker, the spatial 

variations increase [Kang and Lenschow, 2014]. 

3.5. Intra-farm wind speed variability and wind power production 

We estimated the wind power production with and without intra-farm wind speed 

variability for each season. The individual wind power estimation, e, was 

calculated with the equation (3) and total wind farm power estimation was with 

equation (4): 

𝑒 =  
1

2
× 𝜌 × 𝐶𝑃 × 𝐴 × 𝑀3

,      (3) 

𝑒𝑡𝑜𝑡 = ∑ 𝑒𝑖
𝑁
𝑖=1 ,                       (4) 

M here is qualified 1-week wind speed time series from each selected wind 

turbine with 15 minute intervals.  We assumed  𝜌 as sea level air density and  

𝐶𝑃 as the theoretical maximum capacity factor which is 0.593. A is a typical rotor 

disc area of 3848 m2
 [Burton et al., 2011; Manwell et al., 2010; Poore and 

Lettenmaier, 2003]. N is the number of the selected wind turbine for each week in 

each season. Also to calculate the wind power production without considering 

intra-fam wind speed variability, we used equation (5) and compare it with 𝑒𝑡𝑜𝑡  : 

              𝐸 =  
1

2
× 𝜌 × 𝐶𝑃 × 𝐴 × 〈𝑀〉3 × 𝑁     (5) 

For wind power estimation, we set that the cut-in speed of 3.0 m s−1
, the rated 

speed of 11.5 m s−1
, and the cut-out speed of 27.6 m s−1   and the rated 

power is 1.5 MW [Poore and Lettenmaier,2003]. As shown in Figure 11, for both 

winter and summer, for greater production above 200 MW, wind farm power 

calculation without considering intra-farm wind speed variability is overestimated 

than that with considering wind speed variability. 

4. CONCLUSION 

The intra-farm variability of wind speed in both spatial and temporal aspects were 

investigated utilizing qualified five 1-week wind speed time series by nacelle 

anemometers at selected wind turbines from total 274 turbines in a large wind 

farm over an area of about 20 × 20 km2. 

During summer influence of diurnal variation is the most significant factor on wind 

flow in temporal scale, while the spectral peak during winter is located at longer 

than 24 hours.  

Correlation coefficients are larger during winter than during summer with as well 

as without low-pass filter. Also, the wind speed temporal intermittency is more 

significant during summer than during winter. 

Rapid wind ramp-down events are much more frequent, on temporal scales ≤ 3 

h, during both winter and summer than a Gaussian PDF suggests and the wind 

farm power forecast may be overestimated without considering intra-fam wind 

speed variability especially for large wind power production. 
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FIGURES AND TABLES 

 

 

Figure 1. Locations of 274 wind turbines, two meteorological towers, A09 and 

H06 in the study wind farm. The color-filled contours are the terrain heights (a) in 

and (b) around the wind farm. The distance of each wind turbine from A09 is 

marked with the color of each dot at the turbine location. Also indicated are the 

reference wind turbines (A, B, and C) used for the correlation coefficients 

presented in Figs. 6-8.  
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Figure 2. Wind roses derived from wind measurements at the height of 80 m on 

the A09 meteorological tower during the (a) winter and (b) summer seasons.                          

 

Figure 3. (a) An example of the composite spectrum 〈𝑓𝑆𝑀(𝑓) 𝜎𝑀
2⁄ 〉 over the 

wind farm (thick blue line) and the individual spectra 𝑓𝑆𝑀(𝑓) 𝜎𝑀
2⁄  used for 

the composite spectrum (thin gray lines). (b) The composite spectra of one-week 

time series filled with the three different interpolation methods: cubic, nearest, 

and linear. The error bars represent the standard deviations of the composite 

spectrum over the individual spectra. The reference spectral slop of 𝑓−2 3⁄
 is 

plotted with the black dashed line. 

 

 

 

Figure 4. Composite spectra {〈𝑓𝑆𝑀(𝑓) 𝜎𝑀
2⁄ 〉} (blue line) of nacelle 

anemometer wind speed for the (a) winter and (b) summer seasons. The gray 

lines are the spectra 〈𝑓𝑆𝑀(𝑓) 𝜎𝑀
2⁄ 〉 of all the five, one-week time series of 

wind speed for each season. The error bars represent the standard deviations of 

{〈𝑓𝑆𝑀(𝑓) 𝜎𝑀
2⁄ 〉} over the five 〈𝑓𝑆𝑀(𝑓) 𝜎𝑀

2⁄ 〉. The reference spectral 

slop of 𝑓−2 3⁄
 is plotted with the black dashed line. 

 

 

Figure 5. Correlation coefficients (symbols) of the nacelle anemometer time 

series between at the reference wind turbine and all the selected wind turbines 

for the five weeks of the (a) winter, (b) summer seasons. The linear regression 

lines are obtained using the least square method.  
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Figure 6. Comparison of (a) 15-min averaged nacelle anemometer time series at 

a reference wind turbine 𝑀𝑟  (blue line) and at an ith wind turbine 𝑀𝑖 (red line) 

over a week. Also compared are the low-pass filtered fields [𝑀𝑟]𝑃 (blue lines) 

and [𝑀𝑖]𝑃 (red lines) with a cutoff time scale P = 24 h. Here, the correlation 

coefficient 𝜌 between the two time series is presented. 

 

 

Figure 7. Correlation coefficients 𝜌(𝑀𝑟 , 𝑀𝑖) (blue) between the time series at 

the reference wind turbines and the other wind turbines as a function of the 

distance between them for the (a) winter and (b) summer seasons. Coefficients 

𝜌([𝑀𝑟]𝑃, [𝑀𝑖]𝑃) are also obtained after the time series being low-pass 

filtered with the cutoff time scales 𝑃 of 3 h (green), 6 h (cyan), 12 h (magenta), 

and 24 h (red). The lines are the linear regression lines whose colors match with 

the colors of the symbols.  

 

 

Figure 8. The spatial composites <PDF>s of the probability density functions 

(PDFs) of the velocity increments 𝛿𝑀(𝜏) = 𝑀(𝑥𝑖 , 𝑦𝑖 , 𝑡 + 𝜏) −

𝑀(𝑥𝑖 , 𝑦𝑖 , 𝑡) over the wind farm for every week (a) in the winter season, and 

(b) in the summer season. 𝑀(𝑥𝑖 , 𝑦𝑖 , 𝑡) is a one-week time series of nacelle 

wind speed at a wind turbine located at 𝑿𝒊 = (𝑥𝑖 , 𝑦𝑖). The 𝜏 is the time lag 

and here is 15 min. For each one-week time series, the velocity increments are 

normalized with the standard deviation of wind speed over the time series: 

𝛿𝑀 𝜎𝑡⁄ . The error bars represent the spatial standard deviations 𝜎𝑠 of the 

<PDF>s over the PDFs at all the participating wind turbines for each week. The 

thick gray solid lines represent the Gaussian PDFs. 
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Figure 9. The ensemble-averaged PDFs {〈PDF〉} as a function of the 

normalized velocity increment 𝛿𝑀(𝜏) 𝜎𝑡⁄  with the temporal standard deviation 

𝜎𝑡  over each one-week time series for (a) the winter and (b) summer seasons. 

The time lag 𝜏 varies, at 15 min, 30 min, 1 h, 3 h, 6 h, and 12 h. The thick gray 

solid lines represent the Gaussian PDFs. For each season and each time lag, at 

each 𝛿𝑀(𝜏) 𝜎𝑡⁄ , the standard deviation 𝜎𝑡𝑠  marked with the error bar 

quantifies the temporal  variabil ity of {〈PDF〉} over the five <PDF>s. 

 

 

 

Figure 10. The intra-farm averaged wind speed 〈M〉 and the standard deviation 

𝜎𝑠 of the intra-farm wind speeds obtained as a function of the time of a day 

during (a) winter and (b) summer. 

 

Figure 11. Total power over the wind farm considering the intra-farm variability 

with raw data 𝑒𝑡𝑜𝑡  and low-pass filtered data 𝑒𝑡𝑜𝑡,𝑃  (P=6 and 3h), and total 

power without considering the intra farm variability with raw data E and low-pass 

filtered data Ep  for (a) winter and (b) summer. 
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Table 1 

The percentage of missing data points and the median value of the longest 

periods of consecutive missing data points of the nacelle anemometer time 

series at all the 274 wind turbines for each month.  

 

 

 

 

 

 

 

 

 

Table 2 

For each study week, the number N of nacelle anemometers whose time series 

have the longest period of consecutive missing points ≤ 3 hours, the percentage 

R of missing points out of the total data points, the median value Me of the 

longest periods of consecutive missing points over the 274 anemometer time 

series. The reference turbines, the locations of which are marked in Fig. 1, are 

used in 3.2.     

 

 

 

 

 

 

Month Missing points/Total points           

(%) 

Median of the longest periods of 

consecutive missing data points (hours) 

January 2 0.75 

February 10 2.75 

March 22 10 

April 32 43.25 

May 7 4.25 

June 15 1.25 

July 11 4.75 

August 7 2.25 

September 16 6.25 

October 10 5.5 

November 20 13 

Total 11 months 14 3.75 

 

Season Week N R (%) Me (h) Reference turbine 

Winter W1 196 0.9 0.75 A 

 W2 199 0.7 0.75 A 

 W3 168 3 2.75 A 

 W4 199 0.2 0.25 A 

 W5 199 2 1.00 A 

Summer S1 195 0.3 0.25 B 

 S2 193 1.6 1.25 B 

 S3 137 1.8 0.75 C 

 S4 137 1.5 1.25 B 

 S5 198 1.4 1.75 B 

 


