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Background 
 
Sonic anemometers are not always mounted per-
fectly vertically during field campaigns. Correcting for 
the slight tilt is often important to obtaining more ac-
curate turbulent flux calculations, especially momen-
tum flux, which is particularly sensitive to instrument 
tilt. Over a planar surface, this correction is obtained 
from the WOS planar tilt correction (Wizcak et al 2001) 
using data from the entire deployment. 
 
In a complex environment, the WOS method cannot 
be used. Other methods are problematic and none are 
currently as universally accepted as WOS. My goal 
has been to find a momentum flux computation for use 
in complex environments which does not need 
information about sonic tilt or surface slope infor-
mation. 
 
This study will focus on evaluating the new alternative 
over simple terrain using the CASES99 main tower 
data. This was chosen due to the high confidence in 
standard 𝑢𝑢∗ computation which will be used as a 
ground truth point of reference for the performance of 
my alternative method. 
 
 
CASES99 Field Campaign 
 
The CASES99 field campaign’s main tower was 
located in a flat rural area near Leon, KS, USA, and 
took place in Oct. 1999 (Poulos et al 2002). More info 
and data are available from NCAR  
https://www.eol.ucar.edu/projects/cases99/. 
 
 
Surface stress/momentum flux 
 
A textbook equation for surface stress is  
𝜌𝜌𝑢𝑢∗2 = −𝜌𝜌𝑢𝑢′𝑤𝑤′. In atmospheric flows, to account for 
complexities such as the turning of the wind vector, 
we also use 

𝑢𝑢∗2 = �𝑢𝑢′𝑤𝑤′
2

+ 𝑣𝑣′𝑤𝑤′
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This treats the two terms 𝑢𝑢′𝑤𝑤′ and 𝑣𝑣′𝑤𝑤′ as if they were 
orthogonal components of a 2D vector, when in fact 
they are just two of the six components of the 
Reynolds stress tensor. Within the Reynolds stress 
tensor, 𝑢𝑢′𝑤𝑤′ and 𝑣𝑣′𝑤𝑤′ behave like a 2D vector only 
under rotations around the vertical axis. 
 
 
Matrix Properties 
 
Symmetric matrices with real numbers for entries fall 
into the category of Hermitian matrices. This class of 
matrices has many physical applications, such as for 
quantum mechanics, and are therefore well studied. 
All eigenvalues of Hermitian matrices are real, and the 
eigenvectors corresponding to distinct eigenvalues 
are mutually orthogonal. 
  

𝑢𝑢′𝑖𝑖𝑢𝑢′𝑗𝑗 = �
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For the Reynolds stress tensor, this means that the 
eigenvalues, λB, λM, and λS, may be thought of as 
fundamental variances acting in the directions of the 
corresponding eigenvectors, ΛB, ΛM, and ΛS. Since 
these eigenvectors are mutually orthogonal, they form 
a coordinate system where the turbulent Reynolds 
tensor has only diagonal elements, no covariances.  
 
This would seem to imply that there is a coordinate 
system where 𝑢𝑢′𝑤𝑤′ = 0, however, 𝑢𝑢′𝑤𝑤′ is only equal to 
the surface stress for one very specific coordinate 
system, one in which w is perpendicular to the 
underlying surface. This is the reason that surface 
stress measurements are so sensitive to instrument 
tilt. If the sonic is tilted to more closely align with the 
eigen-coordinate system, the measured 𝑢𝑢′𝑤𝑤′ will be 
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closer to 0. If the sonic is tilted away from the eigen 
coordinates, then the measured 𝑢𝑢′𝑤𝑤′ will be larger 
than the surface stress.  
 
The purpose of planar tilt correction is to convert the 
data into a coordinate system where the direction of 
the w data aligns with the wall normal direction. This 
is relatively straight forward for locations over 
relatively flat terrain. In urban canyons and over 
complex terrain there is no single wall normal 
direction. 
 
Another important property to remember is that the 
eigenvalues and eigenvectors are invariants. This 
means that the eigenvalues will be the same and 
eigenvectors will point in the same direction no matter 
what coordinate system your data is in. You can use 
the data in the form it comes off the sonic anemometer 
with u and v oriented in a way that is advantageous for 
the site, or you can use the same data after it has been 
rotated so that u is east-west and v is north-south, or 
you can use data rotated into a streamwise coordinate 
system with  𝑉𝑉 = 𝑊𝑊 = 0. The resulting eigenvalues 
will be identical for the same time block no matter what 
coordinate system the data is presented in. The 
eigenvectors will point the same direction in space no 
matter what coordinate system the data is presented 
in, but might look different since the reference axes 
are different for each coordinate system.  
 
As a side note, another matrix invariant is the trace, 
the sum of the diagonal elements from upper left to 
lower right. The turbulence kinetic energy is an 
invariant of the Reynolds stress tensor since it is equal 
to half the trace. 
 
 
Quantify Inclination 
 
The relative inclination between the eigen-coordinate 
system and the streamwise system varies as a 
function of distance from the surface, averaging time 
used to calculate the variances and covariances, and 
how the inclination angle is measured. For laboratory 
flows, the commonly reported number is 17° (Hanjalic 
and Launder 1973). This is for 2D flows where there 
is only one angle to define the difference between the 
eigen coordinates and streamwise coordinates. 
Atmospheric flows are rarely 2D. Fig. 1 shows two 
methods of defining an angle of inclination. The angle 
between the eigenvector associated with the smallest 
eigenvalue and the wall normal direction, which is 
parallel to the gravity vector for the CASES99 data, is 
labeled α. The angle between the direction of the 
mean 3D wind vector and the plane defined by the 
eigenvectors associated with the two larger eigen-
values is labeled β. Since atmospheric flows are rarely 
exactly 2D even for simple terrain, α and β are rarely 

equal to each other, but are often close in value. In 
general, β will be preferred because it is defined using 
only sonic anemometer data and does not need 
information about how the sonic is oriented with 
respect to its environment. 
 
 

 
 
Ideal 2D flow 
 
In 2D laboratory flows the Reynolds stress tensor is 
of the form 

�
𝑢𝑢′𝑢𝑢′ 0 𝑢𝑢′𝑤𝑤′

0 𝑣𝑣′𝑣𝑣′ 0
𝑢𝑢′𝑤𝑤′ 0 𝑤𝑤′𝑤𝑤′

� 

 
which can be obtained from the diagonalized matrix 
by rotating the eigen coordinate system by β (or α) 
degrees around the cross-stream axis. For ideal 2D 
flow, this procedure recovers the streamwise 
coordinate system. The same procedure can be 
applied to diagonalized Reynolds stress tensors from 
3D flows, yielding a term in the upper right (and lower 
left) of (𝜆𝜆𝑆𝑆 − 𝜆𝜆𝐵𝐵) sin𝛽𝛽 cos𝛽𝛽. By equating this with the 
term 𝑢𝑢′𝑤𝑤′, we can now calculate a surface stress.  
 

𝑢𝑢∗2 = −(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝐵𝐵) sin𝛽𝛽 cos𝛽𝛽                (2) 
 
Note that since this calculation is based on invariants 
of the Reynolds stress tensor, the results are 
independent of sonic tilt. By using β instead of α, the 
results needed no information about how the sonic 
was oriented. 
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Figure 1: Streamwise coordinate directions 
compared to eigen coordinate directions and two 
possible ways to quantify the relative inclination 
angle 
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Data that closely resembles laboratory flows are used 
to compare eq. 2 to the traditional eq. 1. The data have 
near neutral stability as measured from a bulk 
temperature difference from the thermistors at 5m and 
55m on the main CASES99 tower such that -0.005 
C°m-1 < (T55 – T5)/50 < 0.02 C°m-1. In addition, only 
data from when the winds were greater than a 
threshold value are used. The threshold wind was 
determined from plots of β calculated from one hour 
blocks of data as a function of one hour mean wind 
speed. For wind speeds below threshold, β values 
vary from 0 to greater than 50°, while for wind speeds 
above threshold, β values are greater than 5° and are 
relatively close to the mean β value. The thresholds 
are listed in Table 1 and are best fit by a U1/2 
relationship. These threshold values are remarkably 
close to the thresholds reported in Sun et al (2012) 
derived from the same CASES99 data but by using 
plots of TKE1/2 as a function of wind speed. Klipp 
(2014) also reports similar thresholds for 5m and 50m 
from anisotropy characteristics. 
 
From the scatter plot (fig. 2) of neutral equivalent 𝑢𝑢∗ 
(𝑢𝑢∗𝑛𝑛𝑛𝑛, eq. 2) and standard 𝑢𝑢∗ (𝑢𝑢∗𝑠𝑠𝑠𝑠, eq. 1) for neutral 
conditions, it is clear that the two are nearly identical. 
From the scatter plot of 𝑢𝑢∗𝑛𝑛𝑛𝑛 and 𝑢𝑢∗𝑠𝑠𝑠𝑠 for above 
threshold winds with stable and unstable thermal 
stability (fig. 3), the equivalence is much lower, 
especially for unstable conditions. From the plot of 
𝑢𝑢∗𝑛𝑛𝑛𝑛 and 𝑢𝑢∗𝑠𝑠𝑠𝑠 for slower than threshold winds (fig. 4), it 
is clear that the correspondence does not hold except 
for the neutral stability data. This supports the idea 
that eq. 2 is a neutral equivalent stress. 
 
  
Table 1: Threshold wind speeds 
 
Elevation (m) Threshold (ms-1) 

0.5 1.6 
1.5 2.1 

5 3.4 
10 4.3 
20 6.0 
30 7.1 
40 8.2 
50 9.2 
55 10.3 
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Figure 2: Scatter plot of neutral equivalent 𝑢𝑢∗ (Eq 2) 
and standard 𝑢𝑢∗ (Eq 1) for near neutral conditions 
with wind speeds faster than threshold 
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Figure 3: Scatter plot of neutral equivalent 𝑢𝑢∗ (Eq 2) 
and standard 𝑢𝑢∗ (Eq 1) for non-neutral conditions 
with wind speeds faster than threshold 
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Figure 4: Scatter plot of neutral equivalent 𝑢𝑢∗ (Eq 2) 
and standard 𝑢𝑢∗ (Eq 1) for all stabilities with wind 
speeds slower than threshold 
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Monin-Obukhov Similarity 
 
One major use of 𝑢𝑢∗ is as a scaling term in Monin-
Obukhov surface layer similarity. For the above 
threshold wind neutral data where 𝑢𝑢∗𝑛𝑛𝑛𝑛 = 𝑢𝑢∗𝑠𝑠𝑠𝑠 using 
either should give essentially the same results. For 
other conditions where the two terms are not identical, 
there could be a large impact on the flux gradient 
relationship in ϕm(z/L). 
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From the scatter in plots 5a and 5b, it is seen that for 
faster than threshold winds, the same relationship 
holds with comparable scatter whether one uses 𝑢𝑢∗𝑛𝑛𝑛𝑛 
or 𝑢𝑢∗𝑠𝑠𝑠𝑠 even for non-neutral conditions where 𝑢𝑢∗𝑛𝑛𝑛𝑛 ≠
𝑢𝑢∗𝑠𝑠𝑠𝑠. Plots 6a and 6b, show that even for winds slower 

 

than threshold, the relationship and scatter is the 
same using either version of 𝑢𝑢∗ in the scaling 
relationship. Note that only data from the CSAT3 
anemometers are used. The line is from Högström 
(1988) and is used here to provide context. 
 
Also note that use of eq. 2 instead of eq. 1 does not 
remove the possibility of self-correlation due to the 
same scaling term in the denominator of both ϕm and 
z/L (Klipp and Mahrt 2004). 
 

 
 
Complex, not difficult 
 
Although it seems complex, the process is not 
significantly longer than the traditional method where 
one not only calculates fluxes, but must account for 
instrument or streamline tilt, and rotate into mean wind 
coordinates before calculating 𝑢𝑢∗. 
 

Figure 5: Monin-Obhukov dimensionless shear as a 
function of z/L for all stabilities with wind speeds 
faster than threshold a) Using standard 𝑢𝑢∗ and b) 
Using neutral equivalent 𝑢𝑢∗ 
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Figure 6: Monin-Obhukov dimensionless shear as a 
function of z/L for all stabilities with wind speeds 
slower than threshold a) Using standard 𝑢𝑢∗ and b) 
Using neutral equivalent 𝑢𝑢∗ 
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1. Calculate variances and covariances (fluxes) 
as well as the 3D wind vector, preferably in 
sonic anemometer coordinates before any tilt 
correction. Although you can start with data in 
any coordinate system, it is important that the 
fluxes and wind vector be in the same 
coordinates. Also, use the same averaging 
time (don’t mix 5 min fluxes and 30 min mean 
winds). It is easiest to either use the quality 
controlled data in the original sonic 
anemometer coordinates without any tilt 
correction or to rotate the quality controlled 
data into streamwise coordinates before 
calculating fluxes and means. 

2. Use your favorite math package software (ie 
Matlab, NumPy, etc) to calculate the eigen-
values and eigenvectors using the variances 
and covariances. 

3. Use the eigenvectors and 3D mean wind 
vector to calculate β. 

4. Use β and the eigenvalues to calculate the 
neutral equivalent stress. 

 
 
Conclusions 
 
For data over relatively simple terrain, calculating 𝑢𝑢∗ 
from either eq. 1 or eq. 2 yields the same value for 
near neutral stability. For non-neutral conditions, there 
is significant difference in the values from eq. 1 and 
eq. 2, especially for slower wind speed conditions. 
None the less, eq. 2 yields just as useful a scaling term 
as eq. 1 even when 𝑢𝑢∗𝑛𝑛𝑛𝑛 ≠ 𝑢𝑢∗𝑠𝑠𝑠𝑠. Although calculation 
of eq. 2 is more complex, it does not require the 
researcher to try to rotate the sonic data into a wall 
normal coordinate system. This sets the stage for the 
neutral equivalent stress (eq. 2) to be used in 
situations where planar tilt correction cannot be done 
or where the wall normal direction is either poorly 
known with respect to the sonic anemometer 
orientation or more than one wall normal influences 
the flow. 
 
One shortcoming is that this analysis only applies to 
calculating the local stress, and does not apply to 
calculating the flux of scalars. 
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