EMBRY-RIDDLE Aeronautical University M@TEOKOL9GY

A New Dynamic-based Metric to Explore the Time and Intensity of Extratropical Transition of Tropical Cyclones

32nd Conference on Hurricanes and Tropical Meteorology, San Juan, PR

Tropical Extratropical Interactions II

by

Ajay Raghavendra and Shawn M. Milrad

Embry-Riddle Aeronautical University

Daytona Beach, FL

Extratropical Transition (ET) Often Results In

- Re-intensification
- Wind Field Expansion

(Widespread tropical-storm force winds or greater e.g. Jones et al. 2003; Milrad et al. 2009)

- Precipitation Distribution Shifts Left of Track
- Inland Flash Flooding (Away from the cyclone center)

ET Forecasting Challenges and Issues with Existing ET Metrics

- Fails to account for static stability (Important to determine the magnitude of precipitation)
- Relies at least partially on internal tropical cyclone structure (Numerical models show less skill e.g. Kofron et al. 2010a,b)

We Propose

- A coupled dynamic-thermodynamic approach
- A focus on environmental flow characteristics, not TC structure

Dataset

- NCEP Climate Forecast System Reanalysis (CFSR) (Modern, global, high resolution (0.5°) and reliable precipitation)
- HURDAT2 for TC Cyclone Phase Space Track (Hart 2003)

Presentation Outline

- Eady Moist Baroclinic Growth Rate (EMBGR) Metric
- Example Left Of Center (LOC) Case: IKE 2008
- Example Right Of Center (ROC) Case: LILI 2002
- Grid Centered Composite Technique
- LOC Composite
- ROC Composite
- Discussion and Conclusions
- References
- Acknowledgements

Derivation of Eady Moist Baroclinic Growth Rate (EMBGR)

$$\sigma_{BI} = 0.31 f \frac{\partial \vec{v}}{\partial z} N^{-1}$$

Eady Baroclinic Growth Rate

Eady 1949 and Hoskins and Valdes 1990

$$N_m^2 = \frac{g}{T} \left(\frac{dT}{dz} + \Gamma_m \right)$$

Moist Brunt-Vaisala Frequency (N_m)

Durran and Klemp 1982

$$EMBGR = 0.31 f \frac{\partial v}{\partial z} N_m^{-1}$$

Eady Moist Baroclinic Growth Rate (EMBGR)

Advantages

- Objective evaluation of baroclinicity while also incorporating thermodynamics
- Accounts for moisture
- Relies on <u>environmental flow characteristics</u> and not <u>tropical cyclone structure</u> (Relatively Well Forecast) (Difficult to Forecast)

Moist Absolute Unstable Layer (MAUL)

Bryan and Fritsch 2000

$$N_m^2 = \frac{g}{T} \left(\frac{dT}{dz} + \Gamma_m \right)$$

Moist adiabatic lapse rate $\Gamma_m \sim 6 \frac{{}^{\circ}C}{km}$ in the lower to middle troposphere.

 $N_m^2 < 0$ if $\frac{dT}{dz} > \Gamma_m$ i.e. Saturated environmental lapse rate is greater then the moist adiabatic lapse rate.

(Tropical Cyclone/mid-latitude cyclones are usually associated with a saturated environment)

A Typical LOC Case – IKE (2008)

A Typical ROC Case – LILI (2002)

Grid Centered Composite

- LOC Cases Time of precipitation shift (time: 00 hours)
- ROC Cases Time of interaction with a mid-tropospheric trough (time: 00 hours)
- Background geography for reference only
- Time of precipitation shift (Symmetric to LOC)
- Time of interaction with midtropospheric trough

Composite EMBGR LOC Cases

Composite EMBGR ROC Cases

20

5 10 15 20 25 30 40 50 60 70 80 90 100 110

5 10 15 20 25 30 40 50 60 70 80 90 100 110

5 10 15 20 25 30 40 50 60 70 80 90 100 110

Composite Phase Space Plots

Time of precipitation shift (Time 0 hours)

• Time of interaction with mid-tropospheric trough (Time 0 hours)

RESULTS AND CONCLUSIONS

Advantages of EMBGR as an ET Metric

- 12-24 hours lead time for time of ET
- Increasing spatial extent of EMBGR provides a qualitative method to identify intensifying ET events
- Time tendencies in EMBGR enables differentiation between intensifying (LOC cases) and decaying (ROC cases) ET events

Future Work

- Explore the predictability in real time operational models Research-to-Operations (R2O) Reanalysis data vs. Operational (deterministic and ensemble) models may not produce identical results
- Analyze quantitative techniques to understand intensity of ET using EMBGR

REFERENCES

Atallah, E. H., L. F. Bosart, and A. R. Aiyyer, 2007: Precipitation distribution associated with landfalling tropical cyclones over the eastern United States. *Mon. Wea. Rev.*, **135**, 2185–2206.

Bryan, G. H., and J. M. Fritsch, 2000: Moist absolute instability: The sixth static stability state. *Bull. Amer. Meteor. Soc.*, **81**,1207–1230.

Cordeira, J. M., and L. F. Bosart, 2010: The antecedent large-scaleconditions of the "Perfect Storms" of late October and early November 1991. *Mon. Wea. Rev.*, **138**, 2546–2569.

Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt-Vaisala frequency. J. Atmos. Sci., 39, 2152-2158.

Hart, R.E., 2003: A Cyclone Phase Space Derived from Thermal Wind and Thermal Asymmetry. Mon. Wea. Rev., 131, 585–616.

Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. *Wea. Forecasting*, **18**, 1052–1092.

Kofron, D. E., E. A. Ritchie, and J. S. Tyo, 2010a: Determination of a consistent time for the extratropical transition of tropical cyclones. Part I: Examination of existing methods for Finding "ET Time". *Mon. Wea. Rev.*, **138**, 4328–4343.

Kofron, D. E., E. A. Ritchie, and J. S. Tyo, 2010b: Determination of a consistent time for the extratropical transition of tropical cyclones. Part II: Potential vorticity metrics. *Mon. Wea. Rev.*, **138**, 4344–4361.

Milrad, S. M., E.H. Atallah, and J.R. Gyakum, 2009: Dynamical and precipitation structures of poleward moving tropical cyclones in eastern Canada, 1979 – 2005. *Mon. Wea. Rev.*, **137**, 836-851.

Acknowledgements

- Embry-Riddle Honors Program
- Dr. Anantha Aiyyer

North Carolina State University

• Dr. Robert Hart

Florida State University CPS code (<u>http://moe.met.fsu.edu/~rhart/software.php</u>)

• Shealynn Cloutier-Bisbee

Embry-Riddle Aeronautical University, FL