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Extratropical Transition (ET) Often Results In
• Re-intensification 
• Wind Field Expansion

(Widespread tropical-storm force winds or greater e.g. Jones et al. 2003; Milrad et al. 2009)

• Precipitation Distribution Shifts Left of Track
• Inland Flash Flooding 

(Away from the cyclone center)

ET Forecasting Challenges and Issues with Existing ET Metrics
• Fails to account for static stability 

(Important to determine the magnitude of precipitation)

• Relies at least partially on internal tropical cyclone structure
(Numerical models show less skill e.g. Kofron et al. 2010a,b )

We Propose
• A coupled dynamic-thermodynamic approach 
• A focus on environmental flow characteristics, not TC structure 

Photo credit: Paul Sisson, NWS Burlington, VT

Dataset 
• NCEP - Climate Forecast System Reanalysis (CFSR)

(Modern, global, high resolution (0.5°) and reliable precipitation)

• HURDAT2 for TC Cyclone Phase Space Track 
(Hart 2003)
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Presentation Outline

• Eady Moist Baroclinic Growth Rate (EMBGR) Metric

• Example Left Of Center (LOC) Case:  IKE 2008  

• Example Right Of Center (ROC) Case: LILI 2002 

• Grid Centered Composite Technique

• LOC Composite

• ROC Composite

• Discussion and Conclusions

• References

• Acknowledgements 
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Eady Baroclinic Growth Rate 
Eady 1949 and Hoskins and Valdes 1990

Moist Brunt-Vaisala Frequency (𝑵𝒎)
Durran and Klemp 1982

Eady Moist Baroclinic Growth Rate (EMBGR)

Advantages
• Objective evaluation of baroclinicity while also incorporating thermodynamics
• Accounts for moisture 
• Relies on environmental flow characteristics and not tropical cyclone structure

(Relatively Well Forecast)                                                   (Difficult to Forecast)

Derivation of Eady Moist Baroclinic Growth Rate (EMBGR)
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Moist Absolute Unstable Layer (MAUL)
Bryan and Fritsch 2000
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Moist adiabatic lapse rate 𝛤𝑚 ~6
℃

𝑘𝑚
in the lower to middle troposphere.

𝑵𝒎
𝟐 < 𝟎 if  

𝒅𝑻

𝒅𝒛
> 𝜞𝒎 i.e. Saturated environmental lapse rate is greater then the moist 

adiabatic lapse rate.

(Tropical Cyclone/mid-latitude cyclones are usually associated with a saturated environment)

EMBGR PLOT for IKE 2008
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𝟐 > 𝟎
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A Typical LOC Case – IKE (2008)
SEP-13-2008 06:30 UTC SEP-13-2008 18:00 UTC

SEP-14-2008 06:00 UTC SEP-14-2008 18:00 UTC

L

L
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Sep-11-2008 23:45 UTC
GOES-12 

Sep-13-2008 23:45 UTC
GOES-12 

SEP-12-2008 00:00 UTC SEP-13-2008 00:00 UTC

SEP-14-2008 00:00 UTC SEP-15-2008 00:00 UTC

850-700 hPa Layer 
Averaged Relative Vorticity 

200-300 hPa Layer 
Averaged Potential 
Vorticity
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SEP-12-2008 00:00 UTC SEP-13-2008 00:00 UTC

SEP-14-2008 00:00 UTC SEP-15-2008 00:00 UTC

6 hour Precipitation 
Field Shaded (mm)
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Time of precipitation shift
(Symmetric to LOC)



10

SEP-12-2008 00:00 UTC SEP-13-2008 00:00 UTC

SEP-14-2008 00:00 UTC SEP-15-2008 00:00 UTC

MAUL

Stable
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A Typical ROC Case – LILI (2002)
OCT-03-2002 06:00 UTC OCT-03-2002 18:00 UTC

OCT-04-2002 06:00 UTC OCT-14-2002 18:00 UTC

L

L
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Oct-03-2002 17:45 UTC
GOES-8 

Oct-04-2002 17:45 UTC
GOES-8 

OCT-03-2002 18:00 UTC OCT-04-2002 06:00 UTC

OCT-04-2002 18:00 UTC OCT-05-2002 06:00 UTC
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OCT-03-2002 18:00 UTC OCT-04-2002 06:00 UTC

OCT-04-2002 18:00 UTC OCT-05-2002 06:00 UTC
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OCT-03-2002 18:00 UTC OCT-04-2002 06:00 UTC

OCT-04-2002 18:00 UTC OCT-05-2002 06:00 UTC
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Grid Centered Composite

• LOC Cases - Time of precipitation 
shift (time: 00 hours)

• ROC Cases – Time of interaction 
with a mid-tropospheric trough 
(time: 00 hours)

• Background geography for 
reference only

Time of precipitation shift
(Symmetric to LOC)

Time of interaction with mid-
…..tropospheric trough

25 LOC Cases LOC Composite Storm Track 
(20 Cases)

ROC Composite Storm Track
(20 Cases)

20 ROC Cases
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-12 hours 00 hours

+12 hours

-06 hours

+06 hours +24 hours

Composite EMBGR LOC Cases

MAULStable
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-12 hours 00 hours

+12 hours

-06 hours

+06 hours +24 hours

850-700 hPa Layer 
Averaged Relative Vorticity 

200-300 hPa Layer 
Averaged Potential 
Vorticity
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-12 hours 00 hours

+12 hours

-06 hours

+06 hours +24 hours

6 hour CFSR 
Precipitation Field 
Shaded (mm)
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-12 hours 00 hours

+12 hours

-06 hours

+06 hours +24 hours

Composite EMBGR ROC Cases
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-12 hours 00 hours

+12 hours

-06 hours

+06 hours +24 hours



-12 hours 00 hours

+12 hours

-06 hours

+06 hours +24 hours
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Composite Phase Space Plots 

Time of precipitation shift (Time 0 hours) 

Time of interaction with mid-tropospheric trough (Time 0 hours) 

LOC Composite (20 Cases) ROC Composite (20 Cases)
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RESULTS AND CONCLUSIONS

Advantages of EMBGR as an ET Metric
• 12-24 hours lead time for time of ET
• Increasing spatial extent of EMBGR provides a qualitative method to identify intensifying 

ET events
• Time tendencies in EMBGR enables differentiation between intensifying (LOC cases) and 

decaying (ROC cases) ET events

Future Work
• Explore the predictability in real time operational models Research-to-Operations (R2O)

Reanalysis data vs. Operational (deterministic and ensemble) models may not produce identical results

• Analyze quantitative techniques to understand intensity of ET using EMBGR
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