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What is CYGNSS?

The Cyclone Global Navigation Satellite
System (CYGNSS) is a NASA Earth Venture
Mission project aimed at improving near-
surface wind observations within tropical
cyclones.

It consists of 8 microsats launching October
2016, and will leverage GPS reflectometry to
retrieve near-surface wind speeds.

Advantages over traditional scatterometers:
1. Little to no rain impacts
2. Rapid revisit time

That’s great, but tropical cyclones only

occur a small percentage of the time! What
else can CYGNSS help with?

This study leverages the CYGNSS End-To-End
Simulator (E2ES) to investigate how CYGNSS
maps convectively driven winds in large tropical
precipitation systems in the Indian Ocean.

The E2ES takes input from any gridded,
geolocated, and temporally varying near-surface

wind dataset and simulates what the CYGNSS
constellation would observe.

Key Issues to Explore:

1. CYGNSS provides data in the form of
iIndividual “tracks” of specular points

2. Noise/uncertainty in retrieval increases as a
function of wind speed
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First, we examined how CYGNSS would observe convection
associated with multiple MJO onsets during the DYNAMO
field campaign. Assimilation of the DYNAMO observations
into WRF was performed, and the E2ES was applied to the
resultant wind fields.

» Data assimilation was found to significantly improve
forecasts relative to the control.

* Track-based view provides unique spatiotemporal “cross-
sections” through gust fronts and other convectively driven
wind features.

* Uncertainties in CYGNSS retrievals benefit from filtering.
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3. GEOS-5 Nature Run

The GEOS-5 Nature Run provides approximately two years of
global analyses at ~7-km and 30-min resolution.

« Python toolkit produces E2ES-ready output from any

arbitrary time period and spatial domain.

« Gridded daily CYGNSS maps reproduce essential character

of convective signal, but also demonstrate effects of noise
and sampling.

Contact Info: Timothy Lang, NASA MSFC (ZP11),
Huntsville, AL 80512; (256) 961-7861, timothy.j.lang@nasa.gov
Funding for this research has come from NASA (NNH13ZDA001N-WEATHER)

 Filtering (including range-corrected gain) and
smoothing suggested, but Level 3 gridded
products show promise for convective studies

2. WRF Simulations from DYNAMO Campaign
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