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Overview of the 2015 SFMR cases

Right (Figure 1): Maps displaying — —
the flight tracks for AFRC and NOAA
aircraft are shaded based on the 35op
SFMR wind speed along the track.
Additionally, the best track positions
are plotted as gray lines with each 24°N
track labeled with the first letter of

An Interestlng Case: Joaquin

. — T T T T T P T Rieidane s Hurricane Joaquin was a problem case for
AFRC A S 283"‘""“”"‘““5— forecasters due to the very uncertain model
R G AR - - W N (R forecast tracks and to varying reports from

100 [ N [ e observing systems. Left (Figure 6): displays
- . the official best track for Joaquin. From an
O A T e SFMR perspective, the portion of interest
sof o i et AN 4| occurred on 3 October (red arrow). The AFRC

Introduction

The Stepped Frequency Microwave Radiometer (SFMR) has
been a mainstay on the NOAA WP-3D hurricane hunter aircraft for the
past 15+ years and is a unique and reliable operational instrument for
observing surface wind speeds in tropical cyclones (TCs). Extensive
work to improve the instrument algorithm was completed from the
wealth of data collected during the 2004 and 2005 hurricane seasons
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