TOWARDS DEVELOPMENT OF A CLIMATE THEORY ON TROPICAL CYCLONE GENESIS

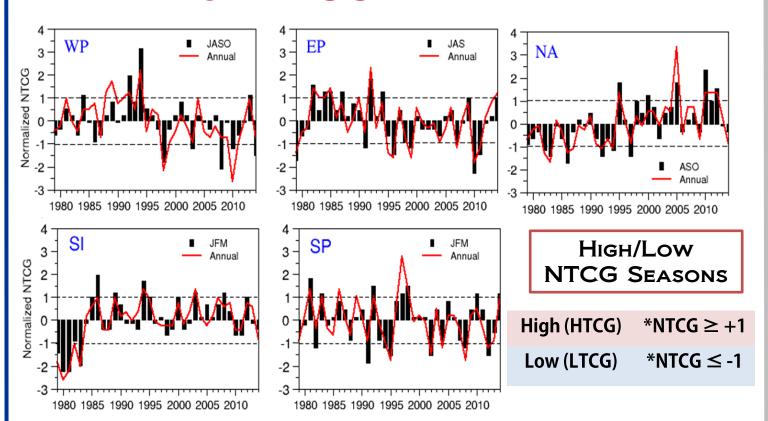
S. Sharmila* and K. J. E. Walsh

School of Earth Sciences, The University of Melbourne, Victoria, Australia

*email: sharmilas@unimelb.edu.au

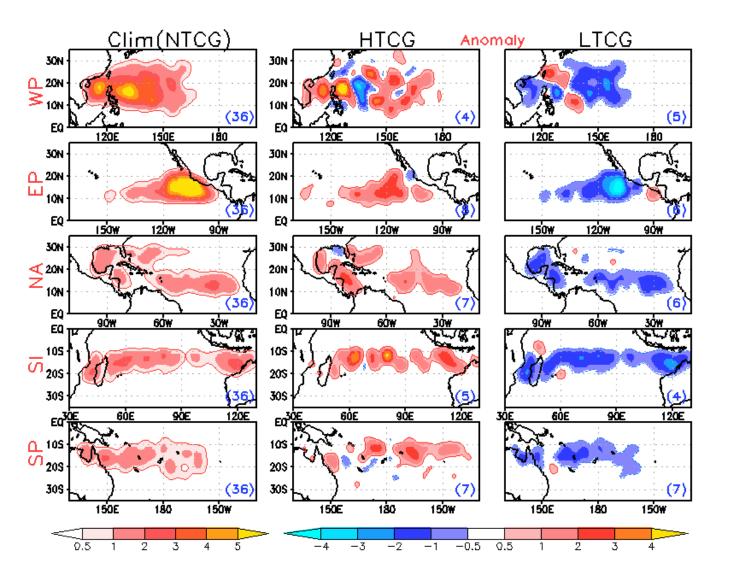
Objectives

A quantitative theory on the relationship between climate and Tropical Cyclone (TC) formation rate still remains elusive [1, 2].


The present study investigates:

- How does the interannual variation (IAV) in large scale tropical climate conditions influence year-to-year variation in the number of Tropical Cyclone Genesis events (NTCG) over individual ocean basins?
- How do the competing effects of dynamical and thermodynamical processes affect TC formation?

Data & Methodology


- International Best Track Archive for Climate Stewardship (IBTrACS-ALL, v03r08) [3]
- ERA-Interim Reanalysis (monthly data) [4]
- NTCG Identification \rightarrow TC_{max wind} > 33 knots
- Domain of Study: 30°S to 30°N
- Study Period: 1979 -2014 (36 years)
- Model outputs from Hurricane Working Group (HWG) experiments [1, 5]
 - ► GFDL High-Resolution Atmospheric Model (HiRAM)
 - Present-Day (Climatology, seasonally varying)
 - SSTp2K (uniform increase in SST of 2K)

IAV OF NTCG

▲ Figure 1 Time series of normalized NTCG (*NTCG) per peak seasons (Table 1) and annual variation (red curves) for individual ocean basins. All time series of peak seasons are normalized by their own standard deviations.

Table	1 ▼
Ocean Basins	Peak Season
Western Pacific, WP	JASO
Eastern Pacific, EP	JAS
North Atlantic, NA	ASO
Southern Indian, SI	JFM
Southern Pacific, SP	JFM

Observed spatial distribution of NTCG climatology (Clim; left) over individual ocean basins per 2°×2° grid box for peak seasons over entire period (1979-2014), and for anomalously high (HTCG; centre) and low (LTCG; right) NTCG seasons. The total number of peak TC seasons considered are shown in brackets.

Results & Discussions

Relationship Between Observed IAV of NTCG & Tropical Climate Conditions

DYNAMICAL & THERMODYNAMICAL CONDITIONS (during peak season)

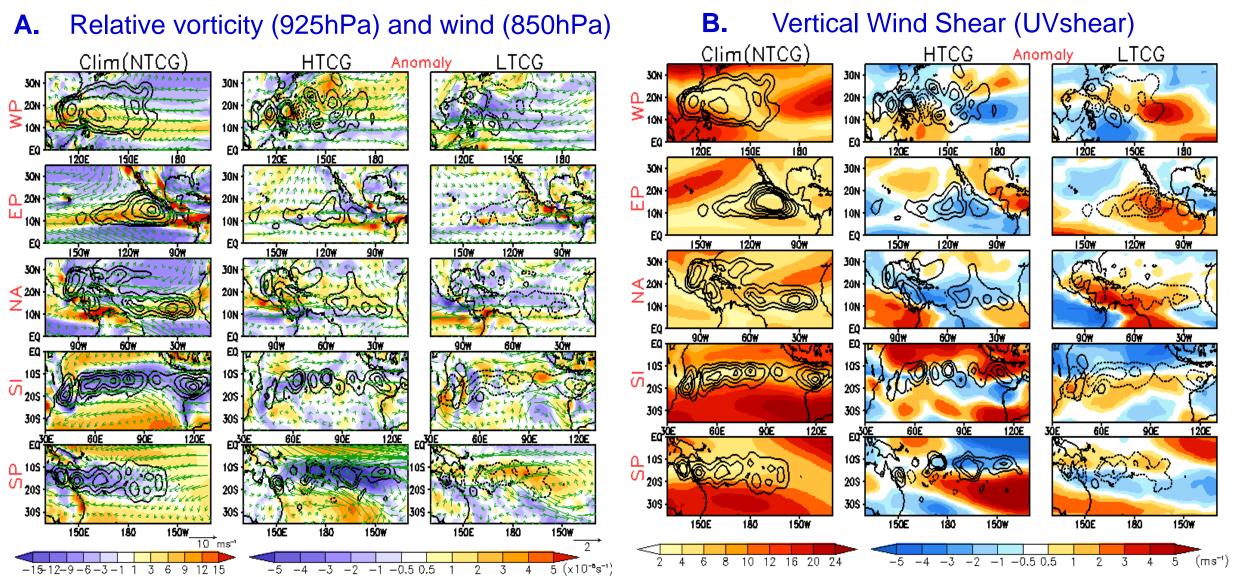


Figure 3A - D. Observed seasonal large scale patterns of tropical climate dynamical & thermodynamical conditions (shaded) overlaid with observed spatial distribution of NTCG climatology for (contoured) (Clim; *left*), for anomalous HTCG (right) (centre) and seasons over individual ocean basins respectively.

Maximum Potential Intensity (MPI)

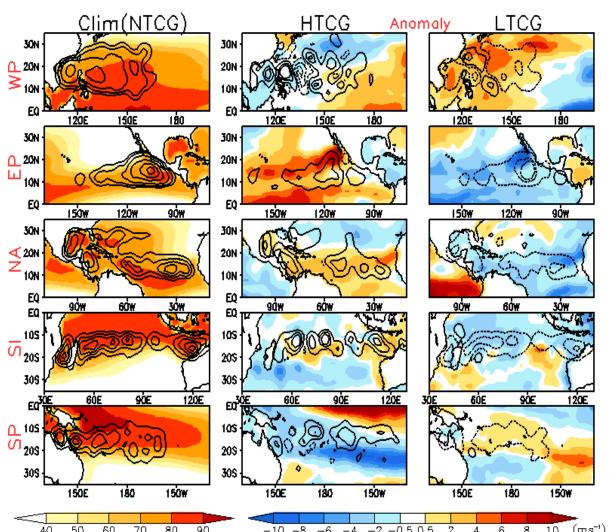
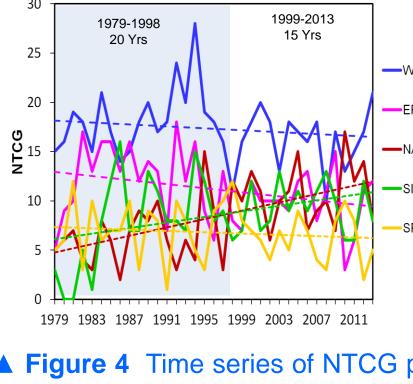
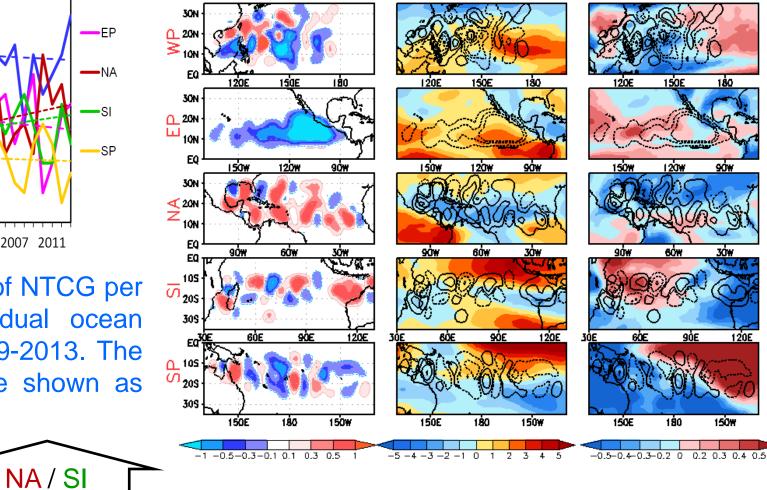


Table 2 ▼


Basins	Key Climate Conditions
WP	Dynamical
EP	Thermodynamical + Dynamical
NA	Thermodynamical + Dynamical
SI	Dynamical + Thermodynamical
SP	Dynamical

Over WP and SP, the variation in NTCG is mostly influenced by large scale dynamical climate conditions.

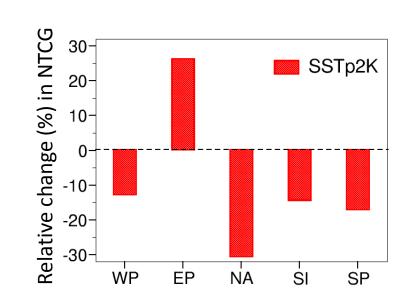
Mid-Tropospheric Relative Humidity


- Both the dynamical and thermodynamical conditions affect the variation in NTCG over EA, NA and SI.
- The seasonal vertical wind shear plays the dominant role in changing NTCG over all individual basins.
- The seasonal pattern of MPI influences NTCG over EP, NA, and SI, however it is not so important over WP and SP.

RECENT CHANGES IN NTCG

▲ Figure 4 Time series of NTCG per peak seasons for individual ocean basins for the period 1979-2013. The respective trend lines are shown as dashed lines.

WP / EP /



Changes relative to base period 1979-1998

(1999-2013) minus (1979-1998)

▼ Figure 5 Observed changes in spatial distribution of NTCG (left) and seasonal large scale patterns of tropical climate conditions; shear (*centre*) vertical wind and midtropospheric vertical gradient of equivalent potential temperature ($d\theta_e/dp$; right).

RESULTS FROM HWG EXPTS.

Increase (decrease) in vertical wind shear is one of the dominant climate factors for decrease (increase) in NTCG over individual ocean basins in the recent decades.

Conclusions & Future Work

- The observed seasonal large scale patterns of tropical climate conditions distinctly determine the spatial distribution of IAV of NTCG over individual ocean basins.
- NTCG changes in recent decades are predominantly linked with changes in the large scale dynamical conditions rather than thermodynamical conditions.
- Preliminary results under warmer climate also show dominance of dynamical conditions in changing NTCG over most of the ocean basins.
- Analyses and high-resolution model simulations are underway to quantify the mechanisms responsible for such distinct variations.

- ▲ Figure 6 Simulated changes (%) in NTCG relative to Present-climate simulation over each ocean basins (during peak seasons) for SST2K experiment.
- Under a warmer climate scenario, most of the ocean basins (except EP) show a 10-30% decrease in NTCG relative to present climate, consistent with [5].
- More analyses are underway to understand the role of key climate conditions.

References

[1] Walsh et al. (2015) BAMS, 96:997-1017 [2] Walsh et al. (2016) WIREs, 7:65-89

[3] Knapp et al. (2010) BAMS, 91:363-376 [4] Dee et al. (2012) QJRMS, 137:553-597 [5] Camargo et al. (2014) JClim, 27:9171-9196

This research work is supported by Australian Research Council (ARC) Discovery Project (Grant No. DP150102272).

Acknowledgement

