Using Shape Metrics to Compare Observed and Simulated Reflectivity During the Landfall of Hurricane Isabel (2003)

Corene Matyas Stephanie Zick, Jingyin Tang

Department of Geography, University of Florida

Thanks to Gary Lackmann and Michael Bell

Overview and Objectives

- Compare observed radar reflectivity values (Tang and Matyas 2016) with simulated reflectivity from an ensemble of WRF models for a landfalling hurricane due to sensitivity to model physics (e.g., Davis et al. 2008; Fierro et al. 2009)
- Identify biases in reflectivity values
- Use shape metrics to compare spatial distribution of reflectivity values (Matyas 2007; 2009; 2010; Zick and Matyas, in revision)
- Case study: Hurricane Isabel (2003)

WSR-88D Mosaic

- Sites within 600 km of storm center
- Level II reflectivity
- Preprocessing, coordinate transformation, projection
- Reflectivity values placed onto 3 km x 3 km x 0.5 km grid
- Highest value retained, Cressman interpolation to fill gaps
- Horizontal slice at 3.5 km

Technique profiled in Tang and Matyas (2016) Journal of Atmospheric and Oceanic Technology

WRF Ensemble (Cumulus)

	Cumulus Parameterization	BOTH are mass flux schemes & incl. shallow convection	Operational Models/ Research Studies
	Kain-Fritsch (Kain and Fritsch 1990; Kain 2004)	 Closure for (deep) convection based on CAPE Cloud, rain, ice and snow detrainment No momentum transport 	COAMPS-TC 2010-14; NCAR-MMM Advanced Hurricane-research WRF (AHW) 2010; Davis et al. (2008); Gentry and Lackmann (2010)
<i>May</i> perform better	Tiedtke (Tiedtke 1989; Zhang et al. 2011) → recommended for hurricane simulations in WRFv3.6.1 documentation	 Closure: CAPE Cloud and ice detrainment Includes momentum transport 	NCAR-MMM AHW 2011-13; Torn and Davis (2012)

Mesoscale model configurations from: <u>http://www.ral.ucar.edu/projects/hfip</u>

WRF Ensemble (Microphysics)

Microphysics Parameterization	Mass Variables	Number Variables	Operational Model/ Research Studies
WSM6 (Hong and Lim 2006)	Qv, Qc, Qr, Qi, Qs, Qg	-	NCAR-MMM AHW 2011- 13; PSU WRF/EnKF 2011-14 Numerous TC research studies
WDM6 (Lim and Hong 2010)	Qv, Qc, Qr, Qi, Qs, Qg	Nn ⁺ , Nc, Nr (Nn ⁺ = CCN number)	N/A Hurricane Nature Run (Nolan et al. 2013)
Morrison-2M (Morrison et al. 2009)	Qv, Qc, Qr, Qi, Qs, Qg	Nr, Ni, Ns, Ng	N/A Brown, Bell, and Frambach (2015) (use these 3 and more complex schemes)

Mesoscale model configurations from: <u>http://www.ral.ucar.edu/projects/hfip</u>

Weather Research and Forecasting (WRF) Model

WRF-ARW v3.6.1

Domain: 27 km (d01) \rightarrow 9 km (d02) \rightarrow 3 km (d03) 40 vertical levels with 2 hPa model top

Timing:d01 initialized 00 UTC Sep 16 2003d02/3 initIzed 00 UTC Sep 17 2003BT landfall:17 UTC Sep 18 2003all sims end:18 UTC Sep 19 2003

Physics: YSU boundary layer

RRTMG longwave and shortwave radiation Tiedtke (◊) & Kain-Fritsch (੦) convection (fully explicit on d03)

WSM6, WDM6, & Morrison-2M

microphysics

Ocean: SSTs prescribed

Position and Intensity Comparisons

WSM6

WDM6

Morrison

250

NV.

500 Km

Reflectivity 0900 UTC

WSM6

Reflectivity Bias

	T/ WSM6	T/ WDM6	T/ Morrison	KF/ WSM6	KF/ WDM6	KF/ Morrison
20	-2.3	-10.0	1.0	-7.1	-10.0	1.9
25	-1.9	-14.3	0.0	-6.3	-14.4	1.8
30	-1.4	-12.5	-0.4	-2.3	-13.6	4.0
35	-1.0	-7.1	-0.5	-0.8	-6.8	4.1
40	0.8	-3.1	1.4	1.8	-1.8	4.5
45	2.4	1.4	1.8	3.8	2.6	6.5
Average	-0.6	-7.6	0.5	-1.8	-7.3	3.8

Dispersion Metric Results

$$\mathsf{D} = \sum_{i=1}^{NP} \frac{Area_i}{\sum_j^{NP} Area_j} \left(\frac{r_{centroid,i}}{r_{search}}\right)$$

NP = number of polygons r = radius Search distance = 600 km

Zick and Matyas, in revision Annals of the Association of American Geographers

Conclusions and Future Research

- Reflectivity biases inconsistent through time and different reflectivity values
- Tiedtke handles intensity after landfall best, lowest reflectivity bias
- Both WDM6 have extremely low reflectivity values
- Kain-Fritsch Morrison over intensifies after landfall, too much convection
- Storm shape sensitive to convective parameterization

- Explore rainfall totals
- Examine different altitudes
- Refine bias correction

