Prediction & Predictability of Hurricane Joaquin (2015) Revealed through Convection-permitting Real-time Deterministic and Ensemble forecasts

Yonghui Weng and Fuqing Zhang Penn State University

Contributor: Christopher Melhauser

Sponsored by NOAA/HFIP and ONR

APSU real-time configurations

ARW V3.4.1 Grell-Devenyi Cumulus ensemble (27 km domain only) WSM 6-class Microphysics graupel PBL YSU Surface Monin-Obukov Layer Land Surface thermal diffusion Radiation Rrtm / Dudhia Air-sea flux Green and Zhang Ocean 1-D

- 60-member ensemble
- Gaspairi & Cohn 99' covariance localization with varying Rol
 - IC & BC: GFS using 3DVAR background uncertainty
- Hourly assimilation with TDR over all 3 domains

ATCF IDs:

APSU: stream 1.5, ARW 3-km deterministic forecast; **PS01-10**: stream 2.0, ARW 3-km ensemble forecasts.

ARW-EnKF Performance Assimilating Airborne Vr

all 100+ P3 TDR missions during 2008-2012

Quasi-operational evaluation by NOAA/NHC since 2011 as stream 1.5 run WRF-EnKF: 3 domains (27, 9, 3km), 60-member ensemble, PSU TC flux scheme

Position error (km)

Intensity

(Zhang and Weng, 2015 BAMS)

WRF-EnKF Performance w/ versus w/o Aircraft OBS for HFIP/NHC selected RDITT cases w/o TDR during 2008-2012

WRF-EnKF: 3 domains (27, 9, 3km), 60-member ensemble, PSU TC flux scheme

(Weng and Zhang, 2016 JMSJ)

HPSU System (PSU HWRF-EnKF)

- Based on HWRF (or NMM)
 - No convert or interpolation from/to other map projection, coordinates and variables;
 - Can be started from any HWRF/NMM runs
 - w/ or w/o GSI; w/ or w/o ocean
- EnKF is fully functioned as PSU WRF-EnKF
 - Fully parallel, member+domain parallel;
 - Currently can digest GTS, Tcvitals, sat winds;
- Cycling system
 - The system will be initialized at the very begging of the storm, after spin-up, the system will run data assimilation every 3 hours till the end of the storm;
- Initialized with GDAS-EnKF 80 perturbations

PSU HWRF-EnKF and ARW-HWRF real-time systems for Joaquin (2015)

NHC OFCL

EMC HWRF

PSU HWRF-EnKF

PSU ARW-EnKF

EMC HWRF

135

120

105

90

75

60

30

29 30 01

PSU HWRF-EnKF

PSU ARW-EnKF

ARW-EnKF-psu

30

Cycling EnKF assimilating all conventional observations including aircraft Recon, satellite derived winds were assimilated. 26 forecasts every 6h starting 12Z/28th

29 30 01

02 03 04 05

05 06

PSU HWRF-EnKF real-time systems for Joaquin (2015)

PSU HWRF-EnKF and ARW-EnKF real-time systems for Joaquin (2015): homogeneous comparison of mean absolute errors with operational products

 Cycling EnKF assimilating all conventional observations including aircraft Recon, satellite derived winds were assimilated. 26 forecasts every 6h starting 12Z/28th

5-d Rainfall Forecasts w/ realtime PSU WRF-EnKF Initialized at 12Z 29 Sept

5-d Rainfall Forecasts w/ realtime PSU WRF-EnKF Initialized at 12Z 30 Sept

PSU WRF/EnKF Real-time Atlantic Hurricane Forecast

Ensembles at 12Z 29 Sept.

ECWF

12229 012 024 038 048 080 072 084 098

HPSU

al112015 JOAQUIN Vmax(kt) @ 2015092912

al112015 JOAQUIN Vmax(kt) @ 2015092912

12729 012 024 038 048 060 072 084 098 108 120

al112015 JOAQUIN Pmin(mb) @ 2015092912

12229 012 024 038 048 060 072 084 098 108 120

Vmax

Track

12229 012 024 038 048 060 072 084 096 108 120

Ensembles at 00Z 30 Sept.

60⁹W

Perturbation	Description	Number of
Experiment		Overlapping
		Cases
Initial intensity only	3 knots added to initial intensity.	2711
Shear only	Shear decorrelates from control over 25 days.	2916
	Track and initial intensity identical to control.	
Shear + initial	3 knots added to initial intensity and shear	2656
intensity	decorrelates from control over 25 days. Track	
	identical to control.	
Track	Winds (affecting shear and steering)	2204
	decorrelate from control over 25 days. Tracks	
	respond to changing steering flow.	
Track + initial	Same as track but 3 knots added to initial	2051
intensity	intensity.	

Table 2: Description of Perturbation Experiments

Predictability and Error Sources of Tropical Cyclone Intensity Forecasts: CHIPS 2009-2015

> Emanuel and Zhang (2016, JAS, in review)

A conceptual two-scale-coupled error growth model

Ongoing research with Kerry Emanuel

Concluding Remarks

Two fully-cycled convection-permitting ensemble Kalman filter analysis and forecast systems both performed reasonably well throughout Hurricane Joaquin's lifecycle.

The PSU WRF-EnKF deterministic runs provides exceptional 5day rainfall guidance for the record breaking flooding associated with Joaquin.

Limited sensitivity experiments suggest initial conditions are crucial for Joaquin's forecasts but there is a large forecast uncertainty in early stage of Joaquin.

A large convection permitting ensemble with proper vortex-scale initial condition uncertainty is needed for probabilistic prediction of such extreme events like Joaquin, especially when the track error is apparently non-Gaussian.

(Munsell & Zhang 2014 JAMES)

On the Predictability and Error Sources of Tropical Cyclone Intensity Forecasts

Emanuel and Zhang (2016, JAS, in review)

TC Predictability under different shear (5, 6, 7.5m/s)

(Zhang and Tao 2013 JAS; Tao and Zhang 2014 2015 JAMES)

Small random initial perturbations in BL moisture, 20 otherwise identical ensemble members