Wavenumber-2 Deep Convection in Tropical Cyclones

Speaker: Hung-Chi Kuo Substitute: Yi-Ting Yang

Co-Authors: Wei-Yi Cheng¹, Eric A. Hendricks², Yi-Ting Yang³ and Melinda S. Peng⁴

- ¹ University of Washington, Seattle, Washington
- ² Naval Postgraduate School, Monterey, California
- ³ National Taiwan University, Taiwan
- ⁴ Naval Research Laboratory, Monterey, California

Apr. 20 2016

Introduction

Observations

- Deep convection occurs near the tips of the major axis
- Elliptical ring is wider on the major axis and narrower on the minor axis
- (a) Mitsuta and Yoshizumi (1973)
- (b) Shapiro (1983)
- (c) Corbosiero et al. (2006)
- (d) Kuo et al. (1999)
- (e) (NOAA) WP-3D aircraft at 1749 UTC, 10 Sep. 2001
- (f) (NOAA) WP-3D aircraft at 0529 UTC, 7 Nov. 2008

• Deep convection on the tips of major axis in the elliptical vortex

• Cyclonic rotation; slower than the mean tangential flow

Numerical model

- Deep convection on the tips of the elliptical vortex
- Cyclonic rotation; slower than the mean tangential flow

Polygonal eyewalls and eye mesovortices in TCs

Typhoon Herb 1996

Purpose

- The structure of boundary layer pumping
- The convection in tropical cyclones that have elliptical and polygonal eyewalls
- **Method** Asymmetric slab boundary layer model combined with a nonlinear nondivergent barotropic model

Barotropic Model

$$\frac{d\zeta}{dt} = \frac{\partial\zeta}{\partial x}\frac{\partial\psi}{\partial y} - \frac{\partial\zeta}{\partial y}\frac{\partial\psi}{\partial x} + \mu\nabla^{2}\zeta \qquad \qquad \frac{1}{\rho}\nabla^{2}p = f\nabla^{2}\psi + 2\left[\frac{\partial^{2}\psi}{\partial x^{2}}\frac{\partial^{2}\psi}{\partial y^{2}} - \left(\frac{\partial^{2}\psi}{\partial x\partial y}\right)^{2}\right]$$
$$\zeta = \nabla^{2}\psi$$

Slab-Boundary Layer Model

$$Womentum Downward advection Pressure gradient force Frictional effect$$

$$\frac{du}{dt} = -u\frac{\partial u}{\partial x} - v\frac{\partial u}{\partial y} - w^{-}\left(\frac{u_{gr} - u}{h}\right) + f\left(v - \frac{1}{\rho f}\frac{\partial P}{\partial x}\right) - C_{D}U\frac{u}{h} + K\nabla^{2}u$$

$$\frac{dv}{dt} = -u\frac{\partial v}{\partial x} - v\frac{\partial v}{\partial y} - w^{-}\left(\frac{v_{gr} - v}{h}\right) - f\left(u - \frac{1}{\rho f}\frac{\partial P}{\partial y}\right) - C_{D}U\frac{v}{h} + K\nabla^{2}v$$

$$w = \frac{\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)}{h}, w^{-} = \frac{|w| - w}{2}$$

$$U = 0.78(u^{2} + v^{2})^{1/2} \quad \text{(Williams et al. 2003)}$$

$$(2.70/U + 0.142 + 0.0764U) \quad \text{if } U \leq 25$$

$$C_D = 10^{-3} \left\{ 2.16 + 0.5406 \left[1 - \exp\left(-\frac{U - 25}{7.5}\right) \right] \text{ if } U \ge 25 \right\}$$
(Powell et al. 2003)

Updraft of BL Elliptical vortex

 $\zeta_0 = 3 \times 10^{-3} s^{-1}$ a=40 km b=30 km

144 min rotation period

Hovmöller diagram of BL updraft and irrotational wind at a radius of 20 km

 $\zeta_0 = 3 \times 10^{-3} \mathrm{s}^{-1}$

- 144 minute cyclonic rotation period
- Agreement with the observations of Typhoon Herb (1996)

Tangential wind

 supergradient (subgradient) winds inside (outside) the local RMW cause the convergence of the radial wind and strong updraft.

Hurricane Hugo (1989)

- Sharp gradient of radial inflow •
- Super-/sub-gradient wind ٠
- Sharp updraft •

Summary

- Observations
 - Deep convection with cyclonic rotation occurs on the tips of the major axis in an elliptical eyewall
- Asymmetric SBL model combined with a nonlinear nondivergent barotropic model
 - asymmetric tangential and radial wind
 - large convergence and strong updrafts
 - cyclonic rotation
 - jet-like high speed tangential winds upstream the major axis

Tangential momentum equation $\frac{Dv}{Dt} = -\left(\frac{v}{r} + f\right)u$

- ✓ tangential wind deceleration $(\frac{Dv}{Dt} < 0)$ when the air parcels experience as they enter the tip of the major axis region can only be provided by a positive radial wind
- ✓ The tips of the major axis are in the BL jet exit zone and thus supergradient winds are produced.
- ✓ The dynamics of midlatitude upper level super-geostrophic westerly wind in the jet exit region.