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ITCZ on Earth

Observed annual-mean precipitation in 2013

(Frierson et al., 2013)



“ITCZ” on Titan reaches pole

North Polar Lakes South Polar Clouds

Titan’s North Polar Lakes and Seas i
as revealed by the Cassini Titan RADAR Mapper

The Cassini RADAR images in
. this map were obtained in mutiple
‘modes with resolutions

ing m
0 0.3-1.5 km, 2-10 km, and 40-200 km.
False coloring is uudlodlﬁngullh bodies of

liquid
and does not represent the visual appearance of Tan's surface.

(Image source: NASA/ JPL/ ASI/ USGS)

(Bouchez and Brown, 2005)



ITCZ on Earth

Observed annual-mean precipitation in 2013

(Frierson et al., 2013)

Our question: Why doesn’t Earth’s ITCZ reach summer pole?



ITCZ is associated with ascending branch of Hadley cell

During northern summer solstice ITCZ

+——1-<
SP EQ > NP

= latitude where meridional flow vanishes; well correlated with
energy flux equator (Kang et al., 2008) and maximum zonal MSE in most of our
aquaplanet simulations

ITCZ = latitude of maximum zonal precipitation



Observations of Asian monsoon sector

Zonal and time mean streamfunction

Zonal mean precipitation
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1)

2)

Thermodynamic arguments for ITCZ position on Earth

Convection and uplift generally occur over warmest surface waters, just
equatorward of latitude of maximum MSE (Privé and Plumb, 2007) or at
energy flux equator (Kang et al., 2008, 2009)
* Continental distribution (Philander et al., 1996) and ocean heat
transport (Frierson et al., 2013) help explain ITCZ's northern annual-
mean position as a result of warmer waters north of equator

Surface heat capacity affects movement of ITCZ on Earth (Bordoni and
Schneider, 2008; Donohoe et al., 2013)
* Ofteninvoked as part of explanation for far-reaching Hadley cells on
Titan

How do dynamics affect ITCZ position?




ITCZ on Titan

Titan ITCZ reaches pole during solstice, as part of a global Hadley cell
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1)

2)

Use a moist convection aquaplanet GCM with a seasonal cycle

Model developed by Frierson (2006) and Frierson (2007) using FMS spectral core
—  zonally symmetric, slab mixed layer ocean
— no clouds or water vapor feedbacks
— moist convection

3-D; 64 x 128 horizontal resolution; 25 vertical levels

Simulations run for decreased heat capacity — keeping everything else Earth-like
10-year seasonal runs where top-of-atmosphere insolation is empirical fit to Earth’s current insolation (Hartmann, 1994)

Simulations run under eternal solstice forcing for 10 years

Simulations run with Q = aQ, fora=4,2,1,1/2,1/4,1/6,1/8,1/16,1/32



Decreased heat capacity has minimal effect on ITCZ migration

Zonal mean precipitation (mm/day)
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Zonal/time mean precipitation and MSE
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Decreasing rotation has major effect — ITCZ reaches pole beyond Q/8

Zonal mean precipitation
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ITCZ vs. other diagnostics
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Boundary layer forces

ITCZ

u
Bernoulli gradient<—> T
=

S EQ

T R —
G[y] - flu] 4+ [Cu] = vl
[B] = [®] + ([u] +1v]")/2




forces (m/s”2) forces (m/s”2)

forces (m/s”2)

Boundary layer forces
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Boundary layer forces
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Summary

Controls on Earth’s ITCZ are still unclear and most of the literature has focused on
thermodynamic mechanisms as well as on the planet Earth, so we have
approached the problem from a planetary perspective and with an emphasis on
dynamics

We find that surface temperature/MSE and heat capacity do not always control
ITCZ position, and that rotation rate and/or radius are the dominant controls in an
aquaplanet context

We examine boundary layer dynamics and find the ITCZ migration to be well
correlated with friction and other forces.



ITCZ and energy flux equator scale according to power law
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