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1 Introduction

The Archimedean buoyancy of a fluid parcel is
typically offset by the virtual mass effect due to
environmental inertia, yielding an ‘effective buoy-
ancy’ (Davies-Jones, 2003) less than the Archimedean
value. Despite its ubiquity, however, this effect is not
often quantified and is hard to estimate. In addition
to the expected dependence on aspect ratio, recent
work (e.g. Jeevanjee and Romps, 2015) also suggests
that effective buoyancy depends on surface proxim-
ity. We address this by considering idealized buoyant
cylindrical parcels of diameterD and heightH, deriv-
ing analytical expressions for their effective buoyancy
both at the surface and aloft.

2 Analytical results

A Poisson equation for the effective buoyancy β was
found by Davies-Jones (2003):

−∇2(ρ̄β) = g∇2
hρ .

Here, ∇2
h ≡ ∂2

x + ∂2
y and ρ̄ is a reference density pro-

file. Neglecting vertical variations in ρ̄ yields an even
simpler form in terms of the Archimedean buoyancy
B ≡ −g ρ′ρ̄ ,

−∇2β = −∇2
hB . (1)
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Figure 1: Effective buoyancies at the center of the free
cylinder [Eqn. (2), solid line] and the surface cylinder
[Eqn. (3), dashed line] as a function of D/H.

We then consider a cylindrical parcel of diameter D,
height H, and uniform Archimedan buoyancy B0.
Equation (1) is then amenable to solution via Green’s
functions, and in particular we find that at the par-
cel’s center,

β =
B0√

1 +D2/H2
. (2)
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Figure 2: Cartoon of the gradients −∇hphyd and −∇pβ and associated divergences for (a) the free cylinder
and (b) the surface cylinder. See text for interpretation.

Repeating the analysis for an identical parcel situated
at a lower boundary z = 0 where β(0) = 0, we employ
the method of images and find

β =
3B0

2

(
1√

1 +D2/H2
− 1√

9 +D2/H2

)
. (3)

Both these curves are plotted in Fig. 1. Note that β
is is always smaller for the surface cylinder than for
the free one, and that it decreases much more rapidly
as D/H increases.

3 Intuition
Why does β decline with aspect ratio? And why is
this decline so much more marked for surface parcels?
To understand this we introduce the buoyany pres-
sure pβ , defined by

−∇2pβ = ∇2
hphyd (4)

where phyd is the local (not reference) hydrostatic
pressure. Comparison with (1) shows that β =

−(∂zpβ)/ρ̄. The advantage of considering pβ is that
(4) has the simple interpretation that the diver-
gence of −∇pβ must cancel out any divergence pro-
duced by the horizontal hydrostatic pressure gradi-
ent −∇hphyd, and β is just the vertical component of
−∇pβ .

Cartoons of the pβ field for both the free and sur-
face cylinders are given in Fig. 2. As depicted in
panel a, for the free cylinder the z → −z reflection
symmetry of (1) implies that β does not contribute
any net divergence into or out of the cylinder, so the
convergence from −∇hphyd must be balanced entirely
by horizontal divergence from −∇hpβ . This relation-
ship can be integrated to yield pβ = −∆phyd at cylin-
der center. For D � H pβ stays fixed at −∆phyd but
the scale height of pβ varies with D, since that is the
dominant length scale of the problem. The effective
buoyancy β then scales as

β ∼ pβ
ρ̄D

∼ −∆phyd

ρ̄D
∼ B0

H

D
, (5)
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Figure 3: Comparison of the analytical expressions (2) and (3) with numerically diagnosed values of βav/Bav

for Gaussian bubbles with varying D/H.

which is identical to the D � H limit of (2).
This explains the decline of β with aspect ratio.

What about the effect of the surface? As depicted
in Fig. 2b), the β(0) = 0 boundary condition breaks
the z → −z reflection symmetry and implies that the
vertical divergence of β is non-zero. Thus, a smaller
value of | −∇hpβ | (and its divergence) is sufficient to
balance the divergence from −∇hphyd, yielding pβ <
−∆phyd. The smaller value of pβ in turn implies a
smaller value of β, and hence it is symmetry breaking
by the surface that reduces β for the surface parcel.

4 Applications

Though the formulae (2) and (3) were derived for
highly idealized density distributions, one might hope
that they would be applicable to more heterogeneous
density fields. To test this we construct smooth Gaus-
sian density bubbles of varying aspect ratio and cal-
culate β numerically using a Poisson solver, and then
compute the average of both β and B over the bub-
ble. We compare the diagnosed values of βav/Bav

with those predicted by the formulae (2) and (3) in
Fig. 3. The agreement is decent, so our formulae,
while idealized, do seem to capture something essen-
tial about effective buoyancy.

Another application of our formulae would be to
understanding the ‘grey zone’ between hydrostatic
and non-hydrostatic regimes in numerical model-
ing. Interpreting our cylinders as GCM grid cells
or columns of horizontal dimension D and height H,
the curves in Fig. 1 then provide a quantitative map
of the gray zone, telling us how much acceleration
to expect from grid-point convection in large-scale
or convection-permitting models. For instance, Eqn.
(3) tells us that a grid-point surface plume of height
1 km in a convection-permitting model of horizon-
tal resolution 4 km [the threshold identified in the
recent review by Prein (2015)] should experience a
roughly order-of-magnitude reduction in acceleration
from the Archimedean value.

Finally, our results (2) and (3) are essentially just
virtual mass coefficients, which are often employed in
the vertical velocity equation in convective parame-
terizations. If aspect ratios for the parcels are esti-
mated, our formulae could be used to diagnose these
coefficients and replace the ad-hoc values found in
the literature., which currently span a wide range
(de Roode et al., 2012).
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