P6M.8
Nonlinear atmospheric adjustment to thermal forcing
Paul F. Fanelli, Penn State Univ., University Park, PA; and P. R. Bannon
A nonlinear, numerical model of a compressible atmosphere is used to simulate the hydrostatic and geostrophic adjustment to a localized prescribed heating applied over five minutes with a size characteristic of an isolated, deep, cumulus cloud. This thermal forcing generates both buoyancy waves and a horizontally propagating Lamb wave packet as well as a steady state rich in potential vorticity. The adjustments in three model atmospheres (an isothermal, a constant lapse rate, and one with a stratosphere) are studied. The Lamb wave packet and the two lowest order buoyancy waves are relatively unaffected by nonlinearities but the higher order modes and the steady state are. The heating generates a vertically stacked dipole of potential vorticity with a cyclonic perturbation below an anticyclonic perturbation. In contrast to the linear results, the nonlinear dipole is severely distorted by vertical and horizontal advections. In addition, the Lamb wave packet contains some weak positive perturbation potential vorticity. The energetics are examined using traditional and Eulerian available energetics. Traditional energetics consists of kinetic, internal, and potential energies. It is shown that the Lamb wave packet contains more total traditional energy than that input to the atmosphere by the heating. The traditional energy in the packet resides primarily in the form of internal energy and only secondarily in the form of potential energy. The passage of the Lamb wave packet produces an atmosphere that, overall, is cooler, less dense, and with less total traditional energy than the initial atmosphere. Eulerian available energetics consists of kinetic, available potential, and available elastic energies. The heating generates both available elastic and potential energy that is then converted into kinetic energy. Most of the available elastic energy projects onto the Lamb packet, while almost all of the available potential energy is associated with the buoyancy waves and the steady state. The effects of varying the spatial and temporal scale of the heating, while keeping the net heating the same, are examined. As the duration of the heating decreases, the amount of energy projected onto the waves increases. Increasing the size of the heating decreases the amount of energy projected onto the waves. The adjustment is kinetically more vigorous in the nonisothermal atmospheres because of the reduction in the base-state static stability. The presence of a stratosphere produces large anomalies at and above the tropopause that are linked to the vertical motions of the buoyancy wave field.
Poster Session 6M, Idealized Modeling Studies
Thursday, 27 October 2005, 1:15 PM-3:00 PM, Alvarado F and Atria
Previous paper