Session 5R.5 The potential for water vapor and precipitation estimation with a differential-frequency radar

Tuesday, 25 October 2005: 4:30 PM
Alvarado ABC (Hotel Albuquerque at Old Town)
Robert Meneghini, NASA/GSFC, Greenbelt, MD; and L. Liao and L. Tian

Presentation PDF (1.4 MB)

In the presence of rain, the radar return powers from a three-frequency radar, with center frequency at 22.235 GHz and upper and lower frequencies chosen with equal water vapor absorption coefficients, can be used to estimate water vapor density and parameters of the precipitation. A linear combination of differential measurements between the center and lower frequencies on one hand and the upper and lower frequencies on the other provide an estimate of differential water vapor absorption. Conversely, the difference in radar reflectivity factors (in dB) between the upper and lower frequencies is independent of water vapor absorption and can be used to estimate the median mass diameter of the hydrometeors. For a down-looking radar, path-integrated estimates of water vapor absorption may be possible under rain-free as well as raining conditions by using the surface returns at the three frequencies. Cross-talk or interference between the precipitation and water vapor estimates depends on the frequency separation of the channels as well as on the phase state and the median mass diameter of the hydrometeors. Simulations of the retrieval of water vapor absorption show that the largest source of variability arises from the variance in the measured radar return powers while the largest biases occur in the mixed-phase region. Use of high pulse repetition frequencies and signal whitening methods may be needed to obtain the large number of independent samples required. Measurements over a fractional bandwidth, defined as the ratio of the difference between the upper and lower frequencies to the center frequency, up to about 0.2 should be possible in a differential frequency mode, where a single transceiver and antenna are used. Difficulties in frequency allocation may require alternative choices of frequency where the water vapor absorptions at the low and high frequencies are unequal. We consider the degradation in the retrieval accuracy when the frequencies are not optimum.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner