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1.   INTRODUCTION 
The fuel moisture content, is one of the most critical 
inputs of Rothermel’s mathematical fire spread model 
[1, 2], since it is the main driver of a wildfire’s reaction 
intensity and has thus a crucial influence in the 
evolution of every particular combustion event. Its 
relevance encompasses much more than the mere 
computation of the numerical value of the rate of spread, 
and it is often considered itself as an indicator of the 
vegetation health state and is taken into account for the 
computation of almost every wildfire risk assessment 
systems, which is the reason why it is one of the 
parameters, that has been continuously monitored 
across the United States since the early operation days 
of the NFDRS (National Fire Danger Rating System) [3].  

These motivations have led to the pursuit of models 
capable of its accurate determination in order to 
generate consistent inputs, which can contribute to both 
robust wildfires’ spread forecasts and improvements in 
the wildfire risk sentineling routines. However, finding 
methods able to predict in an accurate way the fuel 
moisture content (within ± 1% of error margin) remains 
as an unachieved challenge for wildfire science, and 
therefore it is still required to focus research efforts in 
this direction, in order to be able in the future to produce 
accurate methods for the prediction of wildfires’ spread. 

In this study, different models for the automatic 
moisture prediction of all the fuel types, based either on 
meteorological observations or in satellite remote 
sensing techniques were tested and its error quantified, 
so it has been possible to build a solid basis to assess 
the validity of such methods for forecasts and other 
applications. In addition, some parameters of the 
classical methods have been optimized, in order to 
minimize its prediction error. 

The following lines intend to present the possibilities 
and limitations of the automatic prediction methods of 
fuel moisture content using the knowledge gathered 
during the last decades of wildfire science research. 

1.1. Basic Definitions 
A real fuel complex is usually composed of two main 
classes (Dead and Live fuels), which in turn are sub-
divided in different sizes (1-Hour, 10-Hour, 100-Hour for 
Dead fuels and Herb/Woody (1000-Hour) for Live fuels). 
Each of these sizes are the most basic units of 
vegetation fuels, and their individual amount in 
combination with their geometrical and chemical 
properties are enough for the description of any 
particular fuel model. 

 

Image 1. General Composition of a Fuel Model Complex 

For any of these basic 5 fuel types, its moisture content 
can be computed as a function of its wet (sampling) 
mass and the remaining mass once it has been dried 
[4]: 

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (%) =
𝑚𝑎𝑠𝑠௪௘௧ − 𝑚𝑎𝑠𝑠ௗ௥௜௘ௗ

𝑚𝑎𝑠𝑠ௗ௥௜௘ௗ
𝑥100 

The dried mass is the resulting mass after the sample 
has been dehydratated in an oven. The temperature at 
which such operation in executed is far from being 
standarized, ranging from 60ºC to 100ºC [5].  



 

Figure 1. Ovendry temperature for different Moisture 
Content Experiments (sources: [6, 7, 8, 9, 10, 11, 12, 13, 
14, 15]) 

Indeed, it has been reported that the ovendry 
temperature has been chosen with no particular reason 
on regular basis [4] , so it is very probable that this 
unconsistency in the measurement methods explains 
some of the existing deviations between models and 
reality, since it is very likely this paremeter influences 
the final output. 

Another particularity of the moisture content is that its 
value can very well be over 100% since this percent is 
refered to the waterless mass of the collected sample 
instead of to the total mass. Indeed, Moisture contents 
over 100% are common for the case of live fuels (Herb 
and Woody). Conversely, for dead fuels, its moisture 
content is usually below 30%, which indicates that its 
relative fraction of water mass is very low compared to 
that of the live ones. 

 

Image 2. 1-Hour Fuels (source: [4]) 

Dead fuel classes are named with time units as a 
reference to the time needed in order to change its 
moisture content. For a given size (𝑇𝐿) at a given initial 
moisture content (𝑚଴)  with a given environmental 
situation, there is an equilibrium moisture content  
൫𝑚௘௤൯, which is the moisture content that the fuel would 
reach if such environmental conditions lasted forever. 
In such, conditions, the evolution of the moisture 
content can be expressed as: 

𝑚(𝑡) = 𝑚௘௤ + ൫𝑚(0) − 𝑚௘௤൯𝑒(୪୬(଴.ହ)/்௅)௧ 

Which implies the following change rate: 

𝜕𝑚(𝑡)

𝜕𝑡
=

ln(0.5)

𝑇𝐿
൫𝑚(0) − 𝑚௘௤൯𝑒(୪୬(଴.ହ)/்௅)௧ ∝ 𝑇𝐿ିଶ 

The time lag (𝑻𝑳) is the amount of time required by the 
fuel to change from its current fuel moisture content to 

the average value between the equilibrium moisture 
content its current moisture content. This rate of change 
basically depends on the size of the burnable elements 
as it is illustrated in  

Table 1. 

Dead Fuels Timelag Size (cm) 
Small twigs 1-hour 0 - 6.35 
Larger twigs 10-hour 6.35 -25.4 

Small to moderate branches 100-hour 25.4 - 76.2 
Large branches, small trees 1000-hour 76.2 - 203.2 

 

Table 1. Timelag and size of dead fuels. (source: [4]) 

1.2. Effect on the wildfire propagation 
In order to compute the influence of the fuel moisture in 
the propagation of a wildfire, it is necessary to know the 
fuel moisture content of each of the 𝑛ௗ sizes of dead 
fuel and each of the 𝑛௟ sizes of live fuel. Once this has 
been determined, the global weight averaged fuel 
moisture content of each of the classes can be obtained 
using the following expressions [1]: 

𝑚ௗ௘௔ௗ =
∑ 𝜎ௗ𝑤ௗ𝑚ௗ௘௔ௗ೏

௡೏
ௗୀଵ

∑ 𝜎ௗ𝑤ௗ
௡೏

ௗୀଵ

 

𝑚௟௜௩௘ =
∑ 𝜎௟𝑤௟𝑚௟௜௩௘೗

௡೗
௟ୀଵ

∑ 𝜎௟𝑤௟
௡೗

௟ୀଵ

 

Where 𝜎 stands for the surface to volume ratio of the 
burnable elements, 𝑤  stands for the individual mass 
the fuel size per unit area. These parameters are 
defined for each of the fuel models [16]. 

At this point, it is necessary to introduce the concept of 
the moisture of extinction. Traditionally, the moisture of 
extinction has been defined as the fuel moisture content 
at which there will be no fire propagation according to 
Rothermel’s spread model. In practice, there might 
eventually exist sparse fire propagation, but no uniform 
flame front capable of evolving into a wildfire event will 
be observed [17]. Each fuel model has its own 
extinction moisture content, so it is a parameter given 
in the fuel models charts [16] . As displayed in Figure 
2 , fuel models of dry climatic landscapes often shown 
a lower moisture of extinction in contrast to the fuel 
models of humid climates. 

 

Figure 2. Extinction Moisture Content of Scott & Burgan's 
Fuel Models 



Contrary to the dead fuels, the extinction fuel moisture 
content of the live fuels is not a constant parameter but 
it experiences variations driven by the dead fuels’ 
moisture content. Following [18, 19], its value can be 
computed as: 

𝑀௘௫௧೗೔ೡ೐
= 𝑚𝑎𝑥 ൜𝑀௘௫௧ௗ௘௔ௗ

, 290 ൬
𝑊ௗ௘௔ௗ

𝑊௟௜௩௘

൰ ൬1 −
𝑚ௗ௘௔ௗ

𝑚௘௫௧

൰ − 22.6ൠ 

Where: 

𝑊ௗ௘௔ௗ = ෍ 𝑤ௗ𝑒ିଵଷ଼/௠೏೐ೌ೏೏

௡೏

ௗୀଵ

 

𝑊௟௜௩௘ = ෍ 𝑤௟𝑒ିହ଴଴/௠೗೔ೡ೐೗

௡೗

௟ୀଵ

 

Once that the extinction moisture content is known, it is 
possible to compute the fuel moisture ratio as: 

𝑀௥ௗ௘௔ௗ
= 𝑚ௗ௘௔ௗ/𝑀௘௫௧ௗ௘௔ௗ

 

𝑀௥௟௜௩௘
= 𝑚௟௜௩௘/𝑀௘௫௧௟௜௩௘

 

Which is a decisive value in the fire spread model, since 
its value yields directly to the following necessary 
statement for the existence of a wildfire: 

∃ 𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒 ↔ ቄ  𝑀௥ௗ௘௔ௗ
, 𝑀௥௟௜௩௘

ቅ  ∈  𝑀௥ௗ௘௔ௗ
< 1 ∪  𝑀௥௟௜௩௘

< 1 

Demonstration 
In order to exist a wildfire, it is necessary that there is 
a chemical reaction of oxidation. According to [1], the 
rate at which such reaction takes place is given by: 

𝐼ோ = η୫ௗ௘௔ௗ
𝐼௥ౣ ౗౮ ೏೐ೌ೏

+ η୫௟௜௩௘
𝐼௥ౣ ౗౮ ೗೔ೡ೐

 

With 𝐼௥ౣ ౗౮ ೏೐ೌ೏
> 0  and 𝐼௥ౣ ౗౮ ೗೔ೡ೐

> 0  the maximum 

possible reaction intensities for the dead and live fuels 
respectively, and  η୫  denotes the moisture dumping 
coefficient which following [1, 19, 20]  can be expressed 
as: 

η୫ = 1 − 2.59 𝑀௥ + 5.11 𝑀௥
ଶ − 3.52 𝑀௥

ଷ  ∈ [ 0 , 1 ] 

Which has only a real zero for 𝑀௥ = 1. Regarding the 
derivative of the moisture dumping coefficient, it holds: 

𝜕η୫

𝜕𝑀௥
= −2.59 + 10.22𝑀௥ − 10.56𝑀௥

ଶ 

In particular: 

𝜕η୫

𝜕𝑀௥

(𝑀ோ = 1) = −2.93 < 0 

All things considered, the moisture dumping coefficient 
will equal zero for 𝑀௥ ≥1 and it will never be positive 
again as 𝑀௥ increases since its only real zero is 𝑀௥ = 1. 
Figure 3 Illustrates the mathematical function of the 
moisture dumping coefficient. 

 

Figure 3. Moisture damping coefficient 

Consequently, if in a given environmental context one 
is able to determine accurately enough that both 
moisture fuel ratios are bigger than the unit, this will 
imply the impossibility of a wildfire propagation at such 
circumstances. Conversely, determining that both 
values are close to zero would mean that on this 
particular circumstances the vegetation is extremely 
prone to propagate a wildfire and develop a violent 
event. The determination of fuel moisture content is 
thus a crucial aspect in land management and wildfire 
modelling.  

2.    DATA AND INPUTS 
Most of the up to now developed models for the fuel 
moisture content prediction determine this value merely 
based on meteorological inputs [21, 22, 23, 24, 25, 26]. 
However, over the last years, new approaches and 
methods using satellite based remote sensing have 
been proposed [27, 28, 29, 30, 31, 32, 33, 34, 35]. 
Unlike meteorological and forest stations, satellite 
based remote sensing alternatives are able to develop 
fuel moisture content products for a whole area with 
regular time intervals, which improves the consistency 
of the outputs. Moreover, remote sensing observations 
measure directly variables from the studied vegetation 
itself, this is a remarkable difference with respect the 
meteorology-based methods, in which the state of the 
atmosphere is the origin of the inputs.  

For this study, hourly meteorological records from 
NOAA (National Oceanic and Atmospheric 
Administration) have been used as inputs, in 
combination with the NDVI (Normalized Difference 
Vegetation Index) obtained from the VIIRS (Visible 
Infrared Imaging Radiometer Suite) sensor of the 
Suomi NPP (National Polar Partnership) Satellite, 
which is operated by the NOAA. The outputs of the 
different models have been compared with daily reports 
from the WFAS (Wildland Fire Assessment System) 
and the NFMD (National Fuel Moisture Database). 
These sources of fuel moisture data provide actual 
measurements of all the needed fuel types, so it has 
been possible to compare the predictions made by 
each model with actual observed values, and thus 
obtain objective parameters able to describe the quality 
of each fuel moisture prediction models. 



3.    DESCRIPTION OF THE MODELS 
Modeling the fuel moisture content has always posed a 
great challenge for the wildfire science since its early 
days. For this reason, many efforts have been focused 
in this direction and there is a considerable number of 
proposed prediction models for the fuel moisture 
content for every single kind of fuel. This study has had 
its focus on methods easy to implement automatically, 
which do not require feedback from in situ observations, 
since the final goal of this project was to assess the 
possibilities of developing routines for automatic fuel 
moisture determination globally. For the dead fuels, 
meteorological models that had already been proposed 
have been used and optimized using numerical 
methods, whilst for the live fuels, actual observed 
moisture contents have been compared against 
satellite based remote sensing variables in order to 
develop models for its determination. The outputs of the 
models have been compared with measured values 
obtained through NFDRS daily reports or observations 
from the NFMD. Table 2 illustrates the different sources 
of data taken into account for each of the fuels. 
Contrary to the NFDRS daily reports, where all the 
moisture values are measured at 17:00 local time, the 
collecting hour of the NFMD samples remains unstated 
at their reports, which implies the inadvisability of using 
this data for the fuels, whose moisture content changes 
at a fastest rate i.e. 1 and 10-Hours fuels. However, 
since it is was the only source of measurements of the 
1-Hour fuel moisture content, there has been no more 
alternative than finally using them. 

 

Table 2. Used measured data for the comparison of the 
results 

3.1.   Meteorological models 
Models based on meteorological observations aim to 
predict the fuel moisture content using observed 
meteorological data as inputs. These models are 
particularly useful for the determination of the fuel 
moisture content of dead fuels, since the complexity of 
the involved biological processes is much lower than 
that of the live fuels, which implies that assuming the 
state of the atmosphere as the only driver of these fuels’ 
water content should be a good approach. 

3.1.1.   Small Dead Fuels 
Practically speaking, small dead fuels refer to little and 
large fallen twigs with timelags of 1 and 10 hours. 
These are the main fire drivers in most of wildfire events 
and thus their moisture content prediction is a matter of 

big concern for forest managers. The methods selected 
for the fuel moisture prediction were Nelson’s [25, 36] 
and Fosberg’s [21] for the 1 and 10 hours fuels 
respectively. In order to compute the fuel moisture 
content for the small dead fuels, it is necessary to 
possess the meteorological data of 24-48 hours prior to 
the time at which one wants to determine the fuel 
moisture content.  

Regarding the fine dead fuels, its moisture content is 
very sensitive to the solar radiation [37], indeed this 
parameter must be an input for Nelson’s model. The 
chosen clear sky solar radiation model has been EPA’s 
[38, 39], which have been corrected afterwards, taking 
into account the present cloud cover by using the 
following correction [40]: 

𝑅 = 𝑅଴(1 − 0.75 𝐶𝐹ଷ.ସ) 

Where 𝐶𝐹  is the cloud fraction, 𝑅଴  is the clear sky 
radiation and 𝑅 is the corrected solar radiation. The fact 
that the collecting hour of the samples remains 
unknown has introduced a considerable error in the 
method, which had led to the limitation of the 
optimization possibilities for these particular fuels. 

For the case of the 10-hours fuel moisture content, it 
has been possible to use a solid database of daily 
reports from the NFDRS, with observed values and the 
time of measurement, which has allowed us to obtain 
the exact value of the meteorological variables at the 
same time, in which observations of the fuel moisture 
content were performed. Initially, Fosberg’s model was 
used for the prediction of the 10-hours fuel moisture 
content, resulting into a fair good correlation (𝑅ଶ of 0.6) 
given its simplicity. However, in a later stage, statistical 
methods have been applied for the development of 
models with a better correlation. In this step of the study, 
several models were been trained and tested, in order 
to obtain a general view of their performance for the 10 
hour moisture fuels. We implemented a hold-out 
approach, yielding to a 30% of the data being discarded 
for the training step, and used later for each model 
validation. All performances from different models were 
obtained using the same data in all models, in order to 
avoid differences due to different data sampling. Since 
variables are of different nature, an autoscaling 
preprocessing step was performed in order to make 
data comparable.  

After computing each model and predict the moisture, 
𝑅ଶ and RMSE coefficients were calculated in order to 
compare between them. At this point, outliers and some 
influence study should be performed. However, there 
were two main reasons for not doing this step. The first 
one, is that since more than 15 models were fitted, 
analyzing the existence of outliers was too time 
consuming, and there was no possibility of 
implementing this in an automatic Matlab routine. 
Moreover, some robust strategies which weight 
observations according to their “normality”, were 
implemented as well, but they did not show any relevant 
difference from other models. However, this is clearly a 



future step in order to go deeper into the data analysis 
step. 

Among all the models, Bagged Trees reached the best 
result in terms of 𝑅ଶ  value, with a 0.70 of information 
being explained by this model. This strategy builds a 
Regression Tree along with bagging, which in general 
terms means the average of different trees built by 
considering some random samples of variables. This is 
a technique for overfitting prevention. However, a 
further step in the exploitation of this statistical tool 
would be the prune of the model, leading to more visual 
interpretations of the decision making process 
performed by the tree. 

 

Figure 4. Performance of the different models used for 
prediction of the 10-Hours Fuel Moisture content 

3.1.2.   Large dead fuels 
The fuel moisture content for the 100 and 1000 hours 
timelag dead fuels have been calculated after [19, 35]. 
Unlike in the case of the small dead fuels, which variate 
along the diurnal cycle, the moisture content of the 
large dead fuels changes at a slower rate and thus is 
often considered enough to have a unique value for a 
given day. These methods require as inputs the daily 
values of the maximum and minimum temperature and 
relative humidity as well as the accumulated  
precipitation (for both snow and rain) and the light hours. 
This is an iterative method, in which the value of the 
sought variable on a given day is dependent on what its 
value was the day before. For this reason, it is 
necessary to establish an initial “guess” for the value of 
the variable at a given day,  and then follow the iteration 
steps. If the initial day of an arbitrary guess is far 
enough from the day in which one desires to obtain the 
fuel moisture content, the final result will be the same 
regardless of the initial guessed value. One of the 
consequences of this, is that it becomes necessary to 
be in possession of a consistent and comprehensive 
source of meteorological observations, if these 
methods are wanted to be applied in the most possible 
accurate way. 

Regarding the 100 hours fuel moisture content, the 
value at the 𝑛௧௛ day can be computed as: 

𝑚ଵ଴଴೙
= 𝑚ଵ଴଴೙షభ

+ (𝑚ଵ଴଴್೙
− 𝑚ଵ଴଴೙షభ

)(1 − 0.82𝑒ି
ଵ଺଼

ଵ଴଴଴) 

Where: 

𝑚ଵ଴଴್೙
=

(24 − 𝑃௡) 𝑚ഥ௘௤೙
+ 𝑃௡(0.5𝑃௡ + 41)

24
 

With 𝑃 meaning the precipitation durations (hours) and 
𝑚ഥ௘௤  the daily averaged moisture of equilibrium, whose 
instantaneous value can be determined as a function of 
temperature (𝐹𝑎ℎ𝑟𝑒𝑛ℎ𝑒𝑖𝑡 ) and relative humidity (% ) 
using the following formula [41] : 

𝑚௘௤(𝑇, ℎ) ቐ

0.03229 + 0.281073ℎ − 0.00578ℎ𝑇, 𝑖𝑓 ℎ ≤ 10
2.22749 + 0.16017ℎ − 0.014784𝑇, 𝑖𝑓 10 < ℎ ≤ 50

21.0606 + 0.0055ℎଶ − 0.00035ℎ𝑇 − 0.483199ℎ  𝑖𝑓 ℎ > 50

 

The value of the 1000 hours timelag fuel moisture 
content at day 𝑛௧௛ is determined through: 

𝑚ଵ଴଴଴೙
= 𝑚ଵ଴଴଴೙షభ

+ (𝑚ଵ଴଴଴್೙
− 𝑚ଵ଴଴଴೙షభ

)(1 − 0.82𝑒ି
ଵ଺଼

ଵ଴଴଴) 

Where 𝑚ଵ଴଴଴್೙
 denotes the last 7-day averaged 

boundary equilibrium moisture content. which is 
computed as: 

𝑚ଵ଴଴଴௕೙
=

1

7
෍ 𝑚ଵ଴଴଴௕೔

௡

௜ୀ௡ି଺

 

With: 

𝑚ଵ଴଴଴௕௜
=

ቆ
(24 − 𝑃௜)

2
൫𝑚ഥ௘௤൯ቇ + 30𝑃ௌ೔

+ 𝑃ோ೔
(2.7𝑃ோ೔

+ 76)

24
 

Where 𝑚ഥ௘௤  denotes the daily average moisture of 
equilibrium, which is calculated with the above stated 
equation and 𝑃ௌ, 𝑃ோ  are the hours of precipitation in 
form of snow or rain. 

Once the algorithm for computation of the fuel moisture 
content of large fuels have been described, there are 
some aspects that should be taken into account for the 
optimization of this method.  

Initial Value 
The initial guessed value has been taken using the 
recommendations of the NFDRS [19, 42] according to 
which, the following expressions  should be considered: 

𝑚ଵ଴଴బ
= 5 + 5 𝐶𝐶 

𝑚ଵ଴଴଴బ
= 10 + 5 𝐶𝐶 

Where 𝐶𝐶 is the climate class, which is a value ranging 
from 1 to 4 dependent on the mean annual precipitation. 
There is an available map for USA’s climate classes [26, 
42]. If one wants to calculate the equivalent climate 
class 𝐶𝐶 for any spot in the world out of the USA, the 
following equation gives a very good fitting: 

𝐶𝐶 = 1.4427 ln(𝑎𝑛𝑢𝑎𝑙 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 [𝑚𝑚]) − 6.6429 

If we consider more recent precipitation data [43], we 
can see the result of applying this equation to the whole 
world in Image 3. 



 

Image 3. NFDRS Climate Classes extrapolated to the 
whole world 

This approximation  should work fine for areas, whose 
climates do exist in the USA. However, as a general 
rule it should be used with caution, in particular in 
tropical and areas and wherever the seasonal trends 
significantly differ from the ones in the United States. 

Previous days required 
Another relevant point for the application of the fuel 
moisture content algorithms is to know how many days 
before are necessary to be taken into account with the 
aim of making the convergence error acceptable. In 
order to determine this in an objective way, it becomes 
necessary to study the convergence of the above 
stated algorithm. 

Demonstration of Convergence 
If one considers the equation for obtaining the 100- 
Hours fuel moisture content: 

𝑚ଵ଴଴೙
= 𝑎 𝑚ଵ଴଴್೙

+  𝑏 𝑚ଵ଴଴೙షభ
=

= 𝑏௡𝑚ଵ଴଴బ
+ ෍ 𝑎 𝑏௡ି௜𝑚ଵ଴଴್ ௜

௡

௜ୀଵ

 

Where the term that introduces the error i.e. 𝑏௡𝑚ଵ଴଴బ
 

tends to zero as 𝑛  tends to infinite as long as the 
absolute value of 𝑏 is smaller than the unit : 

lim
௡→ାஶ

൭𝑏௡𝑚ଵ଴଴బ
+ ෍ 𝑎 𝑏௡ି௜𝑚ଵ଴଴್ ௜

௡

௜ୀଵ

൱ = ෍ 𝑎 𝑏௡ି௜𝑚ଵ଴଴್௜

௡

௜ୀଵ

↔  |𝑏| < 1 

Since 𝑏 = 0.684366 ,it is demonstrated that the solution 
will converge, i.e. the same result will be obtained 
regardless of the initial guess if we consider the climatic 
conditions for the last infinite days, which is obviously 
not a practical solution. However, we can determine the 
magnitude of the error as a function of the number of 
previous days for both fuels using the following 
equations: 

ቐ

ห𝐸𝑟𝑟𝑜𝑟𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒ห
𝑚100

= 𝑚10000 𝑏𝑛

ห𝐸𝑟𝑟𝑜𝑟𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒ห
𝑚1000

= 𝑚10000
ඥ𝑏𝑛7

 
 

Finally, if we obtain the initial guessed value as a 
function of the climate class, we can calculate the 
number of days necessary to be taken into account for 
the achievement of convergence errors with a 
magnitude smaller than a given objective, for example 
0.5 % or 0.1%. The results of calculating the number of 
iterations required are displayed in Table 3. 

CC 
𝐶𝐸௠ଵ଴଴ <

0.5% 
𝐶𝐸௠ଵ଴଴

< 0.1% 
𝐶𝐸௠ଵ଴଴଴

< 0.5% 
𝐶𝐸௠ଵ଴଴଴

< 0.1% 
1 8 13 63 93 
2 9 14 69 98 
3 10 14 73 102 
4 11 15 76 106 

Table 3. nº of Iterations required to make the 
convergence error acceptable for the FMC of large dead 

fuels 

 

Figure 5. Convergence Error for Climate Class 2 for the 
1000-Hours timelag fuel moisture content as a function 

of the number of iterations. 

Precipitation hours 
The precipitation hours is not usually a recorded 
parameter at the meteorological stations, so it is 
necessary to define an accumulated rain threshold 
which can be used in order to determine wether an hour 
should be counted as a rain hour or not. The usual 
minimum rain threshold is about 0.1 𝑚𝑚/ℎ𝑜𝑢𝑟 [44] but 
it is not defined in an explicit way which value should be 
considered when applying Fosberg’s method for the 
prediction of the large dead fuels moisture content. In 
order to clarify which minimum amount of precipitation 
should be considered as rain, the algorithm was applied 
using different values as the minimum rain threshold 
and it was determined an optimum value of 0.1 𝑚𝑚/

ℎ𝑜𝑢𝑟 for the 100 hours fuels and 0.8 𝑚𝑚/ℎ𝑜𝑢𝑟 for the 
size of 1000 hours. The results of the optimization test 
are displayed in Figure 6. 

 

Figure 6. Minimum precipitation intensity thresold vs 
Average error of the large dead fuels prediction 

Average Moisture equilibrium content 
Another relevant point, which should be clarified is the 
determination of the daily average moisture equilibrium 
content. Initially, Fosberg [35], suggested to compute it 
as the average value between the maximum and the 
minimum equilibrium moisture content: 



𝑚ഥ௘௤ =
𝑚௘௤೘ೌೣ

+ 𝑚௘௤೘೔೙

2
=

=
𝑚௘(𝑇௠௔௫, ℎ௠௜௡) + 𝑚௘(𝑇௠௜௡, ℎ௠௔௫)

2
 

Which relies on the assumption that the maximum 
temperature and the minimum relative humidity on a 
given day happened simultaneously and vice versa, 
which is probably a too simple approach. In addition, 
the above stated equation implies that the daily 
accumulated probability function of the meteorological 
variables is linear, which albeit being acceptable for a 
first approach is by no means true. A more refined 
possibility was the one implemented at the NFDRS [19] 
which includes a weighting taking into account the light 
hours: 

𝑚ഥ௘௤ =
𝑙ℎ 𝑚௘(𝑇௠௔௫, ℎ௠௜௡) + (24 − 𝑙ℎ)𝑚௘(𝑇௠௜௡, ℎ௠௔௫)

24
 

However, practically speaking a more accurate way of 
determining the daily average equilibrium moisture 
content would be to integrate its value over the whole 
day: 

𝑚ഥ௘௤ =
1

24
න 𝑚௘௤(𝑇(ℎ), 𝐻(ℎ))𝑑𝑡

ଵଶ:଴଴ ௉ெ

଴଴:଴଴ ஺ெ

≈
1

24
෍ 𝑚௘௤(𝑇(ℎ), 𝐻(ℎ))

ଵଵ:ଷ଴ ௉ெ

଴଴:ଷ଴ ஺ெ

 

In order to determine, which is the best way of 
computing the daily average fuel moisture content, the 
algorithm was applied with the NFDRS method and the 
integral one and error of the output was compared. The 
results, which are displayed in Figure 7, show that the 
error is hardly influenced by changing the way of 
calculation of the daily average equilibrium moisture 
content. Indeed, the error is larger for the 1000-Hours 
timelag, although there is a slight improvement when 
applying this method for the 100-Hours timelag. This 
results show that the NFDRS system is simpler and 
more accurate than computing the average of the daily 
equilibrium moisture content.  

 

Figure 7. Improvement of the error after applying the 
integral method 

3.2. Satellite based remote sensing models 
The use of remote sensing based models for the 
evaluation of the fuel moisture content is far from being 
as extended as the one of meteorological models. Most 

of the research done up to know has been performed 
considering the 𝑁𝐷𝑉𝐼  [45] and the land surface 
temperature. For this study, the remotely sensed 
variable, was the 𝑁𝐷𝑉𝐼  derived from the 
measurements performed by the Suomi NPP satellite. 
This variable is considered as a good indicator of the 
chlorophyll content and the health state of the 
vegetation , and it is computed using the following 
formula [46]: 

 

𝑁𝐷𝑉𝐼 =
𝜌ேூோ − 𝜌ோா஽

𝜌ேூோ + 𝜌ோா஽
 

Where 𝜌ேூோ  and 𝜌ோா஽  refer to the reflectance in the 
near infrared wavelength zone and in the red 
wavelength zone. The error of the 𝑁𝐷𝑉𝐼 values from 
the dataset used is estimated to be between 0.5 and 
5% [47].  

When using satellite based remote sensing, it is 
necessary to keep in mind that the data obtained by 
these means, unlike in the case of in-situ 
measurements has a given resolution, and thus, as a 
general rule, it is not possible to obtain directly the value 
of the study variable at the particular study point. This 
derives in the necessity of performing an interpolation 
using the closest 4 points. For this study, the source 
resolution was 4 km at the equator, which equals 
roughly 3km in the latitudes, where observed fuel 
moisture data measurements from the NFMD was 
available. Regarding the temporal resolution, the NDVI 
dataset derived from the VIIRS sensor of the Suomi 
NPP has a weekly frequency. This circumstance 
implies the impossibility of using this techniques for 
prediction methods of the smallest fuels (1 and 10 
hours), which experience changes within the diurnal 
cycle. In addition, the optical properties of the dead 
fuels are not sensitive enough to the change in water 
content, which just leaves the live fuels as the only 
remotely sensible fuels. 

 

The values of the NDVI are delivered with a regular grid 
In practice, we require to know the value of the NDVI in 
a particular position at a particular date. However, as it 
was introduced, it is necessary to perform an 
interpolation . For the general case, one requires to 
obtain the in the position 𝑖௥ 𝑗௥ of the grid, which are real 
numbers: 

𝑖௥ , 𝑗௥ ≥ 1 ∈ ℝ 

Taking into account those numbers, the closest points 
of the grid, which contain information are the four 
possible combinations of applying the floor and ceil 
function to the decimal values obtained for the exact 
position as it is displayed in Image 4. 



 

Image 4. Closest 4 points in a data grid 

If one knows the value of the NDVI at all the four 
corners, then the NDVI value in (𝑖௥ , 𝑗௥)  can be 
estimated as: 

𝑁𝐷𝑉𝐼 =  𝑁𝐷𝑉𝐼௜௥௝଴ + (𝑗௥ − 𝑗଴)(𝑁𝐷𝑉𝐼௜௥௝ଵ − 𝑁𝐷𝑉𝐼௜௥௝ ) 

𝑊ℎ𝑒𝑟𝑒: 

𝑁𝐷𝑉𝐼௜௥௝଴ = 𝑁𝐷𝑉𝐼௜଴௝଴ + (𝑖௥ − 𝑖0)(𝑁𝐷𝑉𝐼௜ଵ௝଴ − 𝑁𝐷𝑉𝐼௜଴௝଴) 

𝑁𝐷𝑉𝐼௜௥௝ଵ = 𝑁𝐷𝑉𝐼௜଴௝ଵ + (𝑖௥ − 𝑖0)(𝑁𝐷𝑉𝐼௜ଵ௝ଵ − 𝑁𝐷𝑉𝐼௜଴௝ଵ) 

In addition, the 𝑁𝐷𝑉𝐼  data is provided with a weekly 
frequency, which leads to the necessity of an additional 
temporal interpolation. The week of the year can be 
computed as a function of the day of the year as follows: 

𝑤𝑒𝑒𝑘௥ =
𝑑𝑜𝑦
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Then, it is necessary to follow the procedure described 
before in order to compute the NDVI during the next 
week (𝑁𝐷𝑉𝐼ଵ) and do the same for the NDVI during the 
previous week (𝑁𝐷𝑉𝐼଴), this finally leads to the value of 
the NDVI in the desired position at the desired date: 

𝑁𝐷𝑉𝐼 = 𝑁𝐷𝑉𝐼଴ + (𝑤𝑒𝑒𝑘௥ − ⌊𝑤𝑒𝑒𝑘௥⌋)(𝑁𝐷𝑉𝐼ଵ − 𝑁𝐷𝑉𝐼଴) 

Thanks to these interpolations, it is possible to obtain 
the value of the NDVI in the same positions and at the 
same days where the moisture evaluation of samples 
by the NFMD took place. In this study, NDVI data from 
a period of 5 years (2013-2017) was considered and 
was compared with all the available measured fuel 
moisture content of different species performed by the 
NFMD. For all the samples, where there was enough 
data to extract statistical conclusions, the 𝑅ଶ value of 
the following model was evaluated: 

𝐿𝐹𝑀𝐶 = 𝑛 + 𝑚 𝑁𝐷𝑉𝐼 

Where 𝑛 is the intercept and 𝑚 the value of the slope, 
which is expected to be positive since high values of the 
NDVI are associated with healthy vegetation. Table 4 
shows the fitting coefficients and the associated 𝑅ଶ for 
all the species which showed an interannual correlation 
degree larger than 0.3. Only 14 out of the 120 species 
from which moisture measurements were available did, 
so, which indicates that the numerical value of the NDVI 
alone is not enough for the determination of the live fuel 
moisture content. 

 

Name 𝑅ଶ 𝑛 𝑚 
Coyotebrush 0.634 -45.777 342.823 

Ceanothus, Bigpod 0.631 -115.353 48.662 
Ceanothus, Hoaryleaf 0.526 -58.271 325.535 

Serviceberry, Utah 0.478 -37.312 28.418 
Bluestem, Little 0.427 553.495 553.495 

Sumac, Skunkbush 0.412 -31.742 496.828 
Kinnikinnick 0.382 29.492 181.581 
Red Shank 0.371 16.038 217.957 

Sage, Purple 0.371 -43.707 490.360 
Ceanothus, Deerbrush 0.369 10.025 176.551 

Mahogany, Alderleaf Mountain 0.364 -23.497 300.260 
Huckleberry, Blue 0.352 -8.679 224.386 

Yellow Rabbitbrush 0.324 -24.046 473.671 
Pine, Interior Ponderosa 0.320 37.602 138.271 

Table 4. Linear model goodness for species studied at 
the NFMD 

 

Figure 8. NDVI vs Fuel Moisture Content for Coyotebrush 

The main reason explaining the general low correlation  
is that the species cannot be treated as live fuels during 
the whole year, but only in the green season [26]. This 
means, that fuel moisture content of samples collected 
during winter and fall is not sensitive to the change in 
water content, which implies the introduction of 
uncorrelated data in the whole conjunct that worsens 
the global correlation. In order to take into account this 
fact, only data from the green season have treated 
individually. For every specie, the following model was 
the one able to produce outputs with a higher 
correlation: 

𝐿𝐹𝑀𝐶 = 𝑎 + 𝑏 𝑁𝐷𝑉𝐼 + 𝑐 𝑁𝐷𝑉𝐼ଶ 

With the correlation parameters displayed in Table 5. 

 

Table 5. Coefficients for Remote Sensing methods for 
Live Fuel Moisture content after the green up 



3.3. Mixed models 
Mixed models intend to predict the fuel moisture 
content using both observed meteorological data and 
remote sensing variables as inputs. Since they imply 
the use of remote sensing, its use is limited to the live 
fuels for the reasons mentioned in the previous section.  

𝐿𝐹𝑀𝐶 = 𝛿 + 𝛼 𝑇ത + 𝛾 𝐹𝐹𝑀𝐶ଵଶ
തതതതതതതതതതത + ෍ ෍ 𝛽௜௝𝑁𝐷𝑉𝐼௜𝑚ଵ଴଴଴

௝

ଶ

௝ୀ଴

ଶ

௜ୀ଴

  

Where 𝑇ത  is the average temperature on the day and 
𝐹𝐹𝑀𝐶ଵଶ is the output of the fine fuel moisture content 
prediction method at 12:00. For each one of the species, 
the best fitting coefficients have been calculated during 
the green season (approximately between March to 
September) resulting in models with very high 
correlation (𝑅ଶ over 0.7). 

4.    ERROR ANALYSIS 
For the evaluation of the goodness that each fuel 
moisture content prediction model exhibited, all of them 
have been tested individually comparing the outputs of 
the model with observed measurements from the 
NFMD. The main parameter defining the error of a fuel 
moisture prediction error is the average absolute error: 

𝐴𝐴𝐸 = |𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐹𝑀𝐶 − 𝑝𝑟𝑒𝑑𝚤𝑐𝑡𝑒𝑑 𝐹𝑀𝐶|തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 

Its value is not divided by the observed since the fuel 
moisture content may have values ranging from 1% to 
40% for dead fuels and from 30% to 400% for the live 
fuels, which would imply that the error of good 
predictions in low moisture situations could be 
oversized whilst wrong predictions in humid scenarios 
would have their error undersized. The parameter, 
which gives an idea of the error related to the study 
variable is the average relative error: 

𝐴𝑅𝐸 =
|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐹𝑀𝐶 − 𝑝𝑟𝑒𝑑𝚤𝑐𝑡𝑒𝑑 𝐹𝑀𝐶|തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐹𝑀𝐶തതതതതതതതതതതതതതതതതതതത
 

The other outputs of the error analysis are the 𝑅ଶ 
correlation between predictions and observations, the 
average error (non-absolute) and the standard 
deviation of the error. These last 2 parameters are 
particularly relevant since as it can be seen in Figure 9, 
the distribution of the error is close to be Gaussian, 
which has implications regarding the sensitivity 
analysis, that will be discussed in the next section. 

 

Figure 9. Error probability for the 1-Hour fuel moisture 
content prediction models 

4.1. Model’s error 

4.1.1. 1-Hour Fuel Moisture Content 
In coherence with other studies [48], the 1-Hour fuel 
moisture content presents a very high deviation 
between expected and observed values. There are 
many reasons that might explain this. Firstly, since this 
kind of fuels change their moisture at the fastest rate, 
the measurement errors might be more relevant than 
for the other classes. In addition, the data available at 
the NFMD only provides the date of the measurements 
and not the hour of the day. For this study, it was 
assumed that all measurements took place at 12: 00, 
and thus much of the existing error might be explained 
by this reason. 

 

Figure 10. Predicted vs Observed 1 Hour FMC 

𝐴𝐴𝐸 (%) 3.469  
𝐴𝑅𝐸 (%) 37.84 

𝑅ଶ 0.1848 
𝜎 (%) 5.4782  

𝑛 1547 

4.1.2. 10-Hours Fuel Moisture Content 
Using statistical methods for the prediction of the 10-
hours fuel moisture content, has proved to be able to 
improve Fosberg’s tradicional model from an 𝑅ଶ 
correlation of 0.6 to 0.7, resulting into the most accurate 
predictions for the dead fuels. 

 

Figure 11Predicted vs Observed 10 Hours FMC 

𝐴𝐴𝐸 (%) 1.702%  
𝐴𝑅𝐸 (%) 18.27% 

𝑅ଶ 0.7 
𝜎 (%) 2.5954 

𝑛 14088 
Table 6. Performance of the prediction of 10-Hours FMC 

 



4.1.3. 100-Hours Fuel Moisture Content 
Since it is necessary to use much more meteorological 
data for the computation of the fuelmoisture content of 
the large dead fuels, the amount of predictions 
compared with observed data is much more smaller. 
The 100-Hours fuel moisture showed a fair correlation, 
although very far from being considered as accurate. 

 

Figure 12.Predicted vs Observed 100 Hours FMC 

𝐴𝐴𝐸 (%) 4.1634 
𝐴𝑅𝐸(%) 25.99 

𝑅ଶ 0.4565 
𝜎 (%) 4.2576 

𝑛 187 
Table 7. Performance of the prediction of 100-Hours FMC 

4.1.4. 1000-Hours Fuel Moisture Content 
The prediction of the 1000-hours fuel moisture content 
presented almost the same correlation as the one of the 
100-Hours fuels, although being slightly better. The 
reason of this small improvement may lay in the fact 
that they are more insensitive to external factors 
involved with the measurement process. 

 

Figure 13.Predicted vs Observed 1000 Hours FMC 

𝐴𝐴𝐸 (%) 3.2450 
𝐴𝑅𝐸 (%) 23.62 

𝑅ଶ 0.5403 
𝜎 (%) 4.4722 

𝑛 282 
 

Table 8. Performance of the prediction of 1000-Hours 
FMC 

4.1.5. Live Fuels’ Moisture Content 

Remote Sensing Models 
The remote sensing models based on the NDVI 
demonstrated a very good correlation. Considering the 
50% of most sensitive species, the 𝑅ଶ was 0.66. 

 

Figure 14.Predicted vs Observed Live FMC for RS 
Models 

𝐴𝐴𝐸 (%) 16.209  
𝐴𝑅𝐸 (%) 15.43 

𝑅ଶ 0.6623 
𝜎 (%) 23.921 

𝑛 1035 
Table 9. Performance of the prediction of LFMC for RS 

Methods 

Mixed Models 
Mixed models demonstrated by far the highest 
correlation values among all the prediction, which has 
been translated into the smallest average relative error, 
which demonstrates the capabilities of mixing both 
optical and meteorological inputs for the fuel moisture 
content determination. 

 

Figure 15.Predicted vs Observed Live FMC for Mixed 
Models 

𝐴𝐴𝐸 (%) 13.7  
𝐴𝑅𝐸 (%) 13.05 

𝑅ଶ 0.7677 
𝜎 (%) 20.35  

𝑛 1035 
 

Table 10. Performance of the prediction of  LFMC for 
mixed models 

4.2. Spatial variation 
Unless satellite based remote sensing methods are 
used for the fuel moisture content determination, the 



daily available information is not equally distributed in 
the space and thus, the construction of maps intending 
to represent the spatial distribution of the variables is 
based on a non comprehensive data set, i.e. a list of 
individual measurements, which leads to the necessity 
of applying interpolation techniques.For the 
determination of the fuel moisture content in any point 
based on a dataset of individual measurements can be 
written as: 

𝑚(𝜑, λ) =
∑ 𝑐௜𝑚௜

௡
௜ୀଵ

∑ 𝑐௜
௡
௜ୀଵ

 

Where 𝑐௜ is the weighting coefficient (usually distance-
based) of each of the individual measurements 𝑚௜ that 
were made at a given coordinates (𝜑௜ , λ௜), and it is a 
function of the position where the value of the moisture 
content is sought and the position of the 𝑖௧௛ 
measurement . In the case of the NFDRS it is computed 
as follows: 

𝑐௜(𝜑, λ) = 𝑓ௗ௜௦௧(𝜑௜ , λ௜ , 𝜑, λ)ିଶ 

𝑊𝑖𝑡ℎ: 

𝑓ௗ௜௦௧(𝜑௜, λ௜ , 𝜑, λ) =

=

∫ 2𝑁(𝜑)𝑎𝑠𝑖𝑛 ቆටsin ቀ
φ୧ − φ

2
ቁ

ଶ
+ cos(λ୧) cos(λ) sin ቀ

λ୧ − λ
2

ቁቇ 𝑑𝜑
୫ୟ୶ (ఝ,ఝ೔)

୫୧୬ (ఝ,ఝ೔)

|φ − φ୧|
 

𝑁(φ) =
𝑎

ඥ1 − 𝑒ଶ sinଶ(φ)  
 

Where 𝑎 is the radius of the Earth at the equator and 𝑒 
the eccentricity as defined by IERS (International Earth 
Rotation and Reference) conventions [49]. However, 
this interpolation method seems rather arbitrary and its 
use has not been yet justified. In addition, its error has 
not been properly assessed, and thus the uncertainty 
associated with the interpolation method surrounding 
theses maps remains unveiled. For these reasons, the 
error of the method has been measured and compared 
with an exponential model, which may correspond 
better with the spatial distribution of the fuel moisture 
content over large areas. In the exponential case, the 
coefficients are calculated as: 

𝑐௜(𝜑, λ) = 𝑒ି௞ ௙೏೔ೞ೟(ఝ೔,஛೔,ఝ,஛) 

The value of 𝑘 must be determined in order to obtain 
minimize the error, i.e. the difference between the 
observed and predicted value. For the optimization of 
the value of 𝑘, daily reports of 𝑁 days from the WFAS 
stations have been taken, each of them having at a 
particular day (𝑑)  𝑛ௗ  active stations reporting  
measurements. For each of these stations, the 
observed values have been predicted using the 
measurements from the remaining  𝑛ௗ − 1  stations, 
and the value of 𝑘  have been optimized in order to 
obtain the maximum performance of the interpolation 
method i.e. : 

𝑘 = arg௠௜௡௞
ቐ෍ ቌ

1

𝑛ௗ

෍ ቤ𝑚൫𝜑௝ , λ୨൯ −
∑ 𝑐௜𝑚௜(1 − 𝛿௜௝)

௡೏
௜ୀଵ

∑ 𝑐௜(1 − 𝛿௜௝)
௡೏

௜ୀଵ

ቤ

௡೏

௝ୀଵ

ቍ

ே

ௗୀଵ

ቑ  

𝑊𝑖𝑡ℎ 𝛿௜௝ being the Kronecker delta. 

In this particular study, 𝑁 = 5924 , which correspond to 
days for a period from January 2000 to December 2017, 
in which the value of 𝑛ௗ ranges from 150 to 2000. The 
results after optimizing the value of 𝑘 are displayed in 
Figure 6 and Table 11. 

 

Figure 16. Results of the optimization test 

 

Table 11 Optimal value of k for all the fuels 

The following Figures show an example of the 
deviations derived from using each of the different 
interpolation models. As it can be seen, the exponential 
interpolation error’s heat map shows lower values on 
average if compared with the map using the inverse 
square interpolation error. 

 

Figure 17. Map of 1000 Hour FMC for March 4th 2017 using 
exponential mehod with optimized k 

 

Figure 18. Map of 1000-Hours FMC for March 4th 2017 
using exponential mehod with optimized k 



 

Figure 19. Heatmap of error (AAE) for the exponential 
method in 1000-Hours FMC March 4th 2017 

 

Figure 20.Heatmap of error (AAE) for the NFDRS 
Interpolation in 1000-Hours FMC March 4th 2017 

5.    SENSITIVITY ANALYSIS 
Once the error of the different models have been 
quantified, it is possible to perform a sensitivity analysis, 
whose objective is the determination of the error 
introduced in the final fire’s spread model  as a 
consequence of the existing errors in the fuel moisture 
predictions. Applying the equations stated in the 
introduction, it is possible to calculate the error 
introduced in the final numerical value of the rate of 
spread as: 

𝑅௘௥௥ ೏೐ೌ೏
=

∫ ∫ 𝑑𝑒𝑣ௗ௘௔ௗ(𝑚, 𝑒)𝑝(𝑚)𝑝(𝑒)𝑑𝑚 𝑑𝑒
ା

଴

௠೘ೌೣ 

଴

2 𝑚௠௔௫
 

With 𝑝(𝑚) the probability function of moisture content 
prediction and: 

𝑑𝑒𝑣ௗ௘௔ௗ(𝑚, 𝑒) = ቀη୫ௗ௘௔ௗ
൫𝑀௥೘೔೙ ൯ − η୫ௗ௘௔ௗ

൫𝑀௥೘ೌೣ ൯ቁ 

൞

𝑀௥೘೔೙ (𝑚, 𝑒) =
𝑚ௗ௘௔ௗ + 𝑒

𝑚𝑒𝑥𝑡

𝑀௥೘ೌೣ (𝑚, 𝑒) =
𝑚ௗ௘௔ௗ − 𝑒

𝑚𝑒𝑥𝑡

 

The error introduced in the rate of spread for a given 
predicted fuel and a given prediction error. Assuming a 
Gaussian distribution of the error and a prediction 
probability function computed numerically considering 
climatic records. Following an analogue procedure, it is 
possible to obtain the error introduced in the rate of 
spread as a consequence of the existing error of the 
live fuels prediction method. 

The results of the sensibility analysis are presented in 
the following tables. The columns represent the 
average ± error margin in fraction of the final computed 

rate of spread for both live and dead fuels. These 
results are in quite good agreement with the general 
error of Rothermel’s model that recent studies [50] 
noted, which might prove that the main source of error 
the prediction of wildland fires is the fuel moisture 
content. Following the definitions of Rothermel’s fire 
spread model [1], the final error in the rate of spread 
must be between the two values that are displayed in 
the table. 

 

Table 12. Average error in the Rate of Spread prediction 
for the different fuels 

One remarkable point from these results is that using 
the same methodology for the prediction of fuel 



moisture content leads to different levels of uncertainty 
from one fuel model to another. Taking into account the 
previously stated equations, this circumstance can be 
explained as a combination of two different factors:  

 The relative influence of the different fuel sizes, 
which means that the global error is somehow 
a weighted average of the error of the 
individual models considering its own spatial 
density. Therefore, those fuel complexes, 
whose rate of spread is more dependent on 
unpredictable fuel sizes will be more 
unpredictable. 
 

 The different moisture of extinction that every 
fuel model has. This value is inversely 
proportional to the sensitivity of the rate of 
spread to the fuel moisture content. In other 
words, the larger the moisture of extinction, 
the more predictable a fuel model is. 

6.    POTENTIAL APPLICATIONS 
The described algorithms can be applied for the 
automation of the wildfire risk assessment routines at 
any point of the globe, as long as it is possible to obtain 
the required meteorological or remote sensing inputs. 
Since the error of each methodology is provided, it is 
possible to determine wether the use of the outputs is 
appropriate or not a given application, depending on the 
required accuracy. The fuel moisture content is a 
valuable input for both wildfire risk calculation and for 
the estimation of the wildfire behavior itself for both 
static and dynamic simulation techniques. Wildfire 
simulations are having a key role 3 possible operation 
scenarios: alarm’s evaluation, support to wildfire 
analysts in the control station and in the direct wildfire 
analysis. In all of the cases, the knowledge of the fuel 
moisture content is a key element if realistic outputs of 
the simulations are wanted. 

The evolution of the live fuel moisture content is highly 
variable depending on the species and on phenological 
aspects, which leads to the inaccuracy of static models 
traditionally used for its determination. As a contrast, 
the proposed methodology for the fuel moisture content 
prediction provides more precise values, with high 
temporal and spatial resolutions.  

The assessment of the deviation from the reality that 
the individual prediction models exhibit can have 
implications in emergency management operations, by 
enhancing the possibilities of the wildfire spread 
prediction systems. Assuming, that the main source of 
error is the uncertainty surrounding the fuel moisture 
content determination and since the statistical behavior 
of the error inherent to the prediction methodologies is 
known, it is possible to define confidence bounds and 
consider them in wildfire spread models, so that the 
prediction routines output possible evolutions of the fire 
spread that correspond to boundaries with a given 
confidence interval. This is what is shown in Figure 21, 
in which a wildfire spread prediction has been 
computed by Pyrosat  considering a best case (the fuel 

moisture content is the predicted one plus twice the 
standard deviation of the prediction models) , the most 
probable case (Computation with the predicted fuel 
moisture content) and the worst case (Computation 
with the fuel moisture content minus twice the standard 
deviation). This implies, that for the 95% of the cases, 
the actual fire spread will be somewhere between the 
upper and lower confidence bounds. 

 

 

Figure 21. Upper and Lower bounds with a 95% of 
Confidence of a wildfire spread prediction done by 
Pyrosat 

Another possible application would be its use in 
prescribed burns. The wildfire behavior of the controlled 
burns often differs with the expected one, mainly 
because of the uncertainty surrounding the fuel 
moisture content, which contrast with the accuracy, with 
which meteorological and topographical variables are 
known. In addition, the application of these 
methodologies at a particular area for long term, could 
be a determinant factor to be taken into account during 
the process of designing and placing the facilities for 
prevention and control of wildfires (firebreaks, road 
paths, water deposits…) 

Although these are the most obvious applications of the 
algorithms presented in this paper, there are many 
other possibilities such as: real time management of 
prevention resources, implementation in fuel maps or 
estimation of burning severity levels and contaminant 
emissions. 

 

Figure 22. 1000 Hours Timelag Fuel Moisture Content for 
the Iberian Peninsula , 24th April 2018 



 

Figure 23. 100-Hours Timelag fuel moisture content for 
Europe, 2nd May 2018. 

7.    CONCLUSSIONS 
Predicting the fuel moisture content in an accurate and 
automatic way remains as an unsolved problem in 
wildfire science, which limits many potential 
applications of developed models for fire spread or 
intensity. However, much progress has been done 
during the last decades, and new possibilities are 
emerging, particularly regarding the use of satellite 
based remote sensing techniques. 

The error of automatic methods for predicting the fuel 
moisture content based either in meteorology or in 
remote sensing is close to the interpolation error in the 
NFDRS maps, which are based on real measurements. 
This implies, that the use of the presented models shall 
be used for the moisture content prediction around the 
globe in order to produce products, with an accuracy 
similar to that of NFDRS maps. In addition, there is a 
lot of room for improvement in the error of the NFDRS 
maps, by only changing slightly the interpolation 
method, using the same procedures and inputs. 

Mixed models adapted to particular species 
demonstrated to be the most powerful tool for the 
automatic prediction of the moisture content. Regarding 
meteorological models, with the exception of the 1-Hour 
fuel moisture content, they demonstrated a quite good 
performance, especially the ones for the prediction of 
10-Hours Fuel moisture content. This allows them to be 
considered for being used for the development of 
spatial products, that will be able to improve the wildfire 
risk assessment capabilities in areas around the globe 
regardless of the availability of forest stations 
performing in-situ measurements.  

With the current automatic models for fuel moisture 
content prediction, the error introduced in the 
computation of the rate of spread is around ± 20% , 
which limits its applications for spread predictions. 
Future models intending to be highly accurate (𝐴𝑅𝐸 <

10%) might require to consider the particularities of 
each species, even for the dead fuels, since many of 
the existing error might be associated to the 
generalizations done in the models.  
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