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Tropical Cyclone Diurnal Cycle
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Diurnal pulses begin forming
in the inner core near sunset

IR brightness each day, and move outwards
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temperature overnight, reaching several
hundred kilometers away by
the following afternoon.
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Clear-air Net Radiative Heating Tendency

Two mechanisms
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Nighttime radiative cooling = = =
destabilize the local and large-scale environment =
deep moist convection =
increase the genesis potential Differential radiative heating

(Melhauser and Zhang 2014) (Gray and Jacobson 1977)



& All the stages: Both convective instability
changes and large-scale nighttime cooling play
important roles

& Rl and mature stages: Differential heating
mechanism act together with the other two

(Tang and Zhang, 2016, JAS)
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Observation of Concentric Eyewall in Edouard (2014)
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Experimental design

Column maximum radar reflectivity
Control NoSolarRad

60 90 120 150 180 210 240 2700
Radius (km)

10-m
NoSolarRad Wind SpEEd

Control . /

——NoSolarRad

——Control

Sep 14
1200 UTC

24 48 72 96 120
Lead-time (hours




SEF and ERC in simulation
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Evolution of BL wind
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. Stronger inner ralnbands in NoSolarRad = more convergence outside of
primary eyewall

* Heating outside the RMW in the midtroposphere = increasing (reducing)
low-level tangential wind outside (near and inside) the RMW - outward
expansion of the RMW



Evolution of vertical velocity

z=2km

D] B The outer-core (outside the
radius of 150 km) upward
motion at mid-level in CNTL
became more organized, and
began to move inward

e Clear moat formation and
SEF

« The latent heating released
from more convective
activities in the inner
rainbands outside of primary
eyewall in NoSolarRad
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Radiative effects on moat formation and SEF

NoSolarRad - CNTL (60 km < R < 75 km)
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Unit: 10-°K/s for (a), (b), (c), and 10-3K/s for (d)

The net radiative heating in
CNTL is much stronger due to
the solar insolation at daytime.

Less conducive for deep moist
convection in CNTL

Less diabatic heating due to
suppressed convection in
CNTL

Difference: 0.5-1 K/day at the
top of the boundary layer



Radiative effects on moat formation
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Heated surface air
weakens WISHE
feedback between the
surface fluxes (that
promote convection) and
the circulation.




SEF: Early stage

vortex: CNTL latent heating: NoSolarRad
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« The absence of diabatic heating forcing and resulted smaller ¥ in

the moat region in CNTL is more important for moat formation in
the early stage of SEF



SEF: Late stage
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« The enhanced inertial stability is more efficient in the low-level

(above BL) wind intensification than enhancing latent heating near
the incipient outer eyewall in the later stage of SEF



Conclusion

® region is highly sensitive to the
mostly in the mid- to upper-level at daytime, which leads to a net

effect and

¢ The feedback between the surface
fluxes (that promote convection) and convective heating (that feeds to

the secondary circulation and then the tangential wind).

¢ NoSolarRad: solar radiation, active rainband,

suppressed primary eyewall,

¢ The radiation-induced IS more important on

formation in the
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