Will Outer Tropical Cyclone Size Change due to Anthropogenic Warming?

Ben Schenkel¹ (benschenkel@gmail.com),

Ning Lin², Dan Chavas³, Gabe Vecchi², Tom Knutson⁴, and Michael Oppenheimer²

1: OU/NOAA CIMMS, 2: Princeton University, 3: Purdue University, 4: NOAA GFDL

2018 AMS Tropical Conference

04/17/2018

Research Sponsored by NSF EAR-1520683

Christensen et al. (2013)

 Used high-resolution GFDL hurricane model for simulations of current climate (blue) and late 21st century conditions (CMIP5 RCP4.5; red)

- Used high-resolution GFDL hurricane model for simulations of current climate (blue) and late 21st century conditions (CMIP5 RCP4.5; red)
- North Atlantic outer TC size shifts towards larger values in late 21st century conditions

1. Are the results of Knutson et al. (2015) consistent across other numerical model simulations?

- 1. Are the results of Knutson et al. (2015) consistent across other numerical model simulations?
- 2. Are the differences in outer TC size between current climate and late 21st century conditions statistically significant?

- 1. Are the results of Knutson et al. (2015) consistent across other numerical model simulations?
- 2. Are the differences in outer TC size between current climate and late 21st century conditions statistically significant?
- 3. Are changes in outer TC size uniform across the entire TC lifecycle (e.g., genesis versus end of lifetime)?

 Three sets of model simulations, that accurately simulate TC activity, used to quantify response of outer TC size to anthropogenic warming:

- Three sets of model simulations, that accurately simulate TC activity, used to quantify response of outer TC size to anthropogenic warming:
 - 1. GFDL HiFLOR model (Murakami et al. 2015): Global coupled model with 25-km grid spacing forced with repeating, identical cycle of radiative forcing and SST nudging to climatology

- Three sets of model simulations, that accurately simulate TC activity, used to quantify response of outer TC size to anthropogenic warming:
 - 1. GFDL HiFLOR model (Murakami et al. 2015): Global coupled model with 25-km grid spacing forced with repeating, identical cycle of radiative forcing and SST nudging to climatology
 - GFDL Hurricane model (2012 operational version; Knutson et al. 2015): regional coupled model with 6-km grid spacing forced with data downscaled from HIRAM global model

- Three sets of model simulations, that accurately simulate TC activity, used to quantify response of outer TC size to anthropogenic warming:
 - 1. GFDL HiFLOR model (Murakami et al. 2015): Global coupled model with 25-km grid spacing forced with repeating, identical cycle of radiative forcing and SST nudging to climatology
 - GFDL Hurricane model (2012 operational version; Knutson et al. 2015): regional coupled model with 6-km grid spacing forced with data downscaled from HIRAM global model
 - GFDL Hurricane model (2006 operational version; Knutson et al. 2013): regional coupled model with 9-km grid spacing forced with data downscaled from ZETAC regional model

- Three sets of model simulations, that accurately simulate TC activity, used to quantify response of outer TC size to anthropogenic warming:
 - 1. GFDL HiFLOR model (Murakami et al. 2015): Global coupled model with 25-km grid spacing forced with repeating, identical cycle of radiative forcing and SST nudging to climatology
 - GFDL Hurricane model (2012 operational version; Knutson et al. 2015): regional coupled model with 6-km grid spacing forced with data downscaled from HIRAM global model
 - GFDL Hurricane model (2006 operational version; Knutson et al. 2013): regional coupled model with 9-km grid spacing forced with data downscaled from ZETAC regional model
- Each model simulation has two experiments: 1) current climate and 2)
 late 21st century conditions (CMIP5 RCP4.5 ensemble mean)

 Outer TC size metric: radius at which azimuthal-mean 10-m azimuthal winds equals 8 m/s (r₈)

- Outer TC size metric: radius at which azimuthal-mean 10-m azimuthal winds equals 8 m/s (r₈)
- Compute r₈ from 10-m winds for all North Atlantic TCs in each model simulation

- Outer TC size metric: radius in which azimuthal-mean 10-m azimuthal winds equals 8 m/s (r₈)
- Compute r₈ from 10-m winds for all North Atlantic TCs in each model simulation
- Current and late 21st century r₈ distributions determined to be statistically significantly different if **both** of following two criteria are satisfied:

- Outer TC size metric: radius in which azimuthal-mean 10-m azimuthal winds equals 8 m/s (r₈)
- Compute r₈ from 10-m winds for all North Atlantic TCs in each model simulation
- Current and late 21st century r₈ distributions determined to be statistically significantly different if **both** of following two criteria are satisfied:
 - Median r₈ values are different according to 1,000-sample bootstrap approach at 95% confidence interval;

- Outer TC size metric: radius in which azimuthal-mean 10-m azimuthal winds equals 8 m/s (r₈)
- Compute r₈ from 10-m winds for all North Atlantic TCs in each model simulation
- Current and late 21st century r₈ distributions determined to be statistically significantly different if **both** of following two criteria are satisfied:
 - Median r₈ values are different according to 1,000-sample bootstrap approach at 95% confidence interval;
 - 2. r₈ distributions taken from different parent distribution as shown by **two-sample Kolmogorov-Smirnov testing at 5% level.**

Motivation

Background

Results

Summary

Changes in Outer TC Size Throughout TC Lifetime

Motivation

Background

Results

Summary

Changes in Outer TC Size Throughout TC Lifetime

Motivation

Changes in Outer TC Size Throughout TC Lifetime

Does this change in outer TC size begin at TC genesis?

Changes in r₈ in late 21st century conditions are primarily confined to later stages of TC lifecycle

Christensen et al. (2013)

TC Cat. 4–5 TC Lifetime Max. Precip. Outer Frequency Frequency Intensity Rate TC Size

TC Cat. 4–5 TC Lifetime Max. Precip. Outer Frequency Frequency Intensity Rate TC Size

Christensen et al. (2013)

Results suggest that changes in full r_8 distribution are primarily due to r_8 changes in later part of TC lifecycle