An Object-Based Approach to Quantify the Influence of Cumulus Parameterization in the Spatial Structure of Precipitation in Hurricane Isabel (2003)

CAREER Award BCS-1053864

Stephanie Zick (Virginia Tech)

Corene Matyas (U. Florida) Gary Lackmann (NC State) Jingyin Tang (The Weather Company/IBM)

Background & Motivation

14B.6 Spatial Metrics that Facilitate the Comparison of Radar Reflectivity Values within Landfalling Tropical Cyclones Matyas, Zick, and Tang (Monthly Weather Review, 2018)

Radar and WRF model-simulated reflectivities in Hurricane Isabel (2003) plotted on a horizontal plane 3.5 km ASL

Background & Motivation

14B.6 Spatial Metrics that Facilitate the Comparison of Radar Reflectivity Values within Landfalling Tropical Cyclones Matyas, Zick, and Tang (Monthly Weather Review, 2018)

Source: Dennis Mersereau

Weather Research & Forecasting (WRF) Model

WRF-ARW v3.6.1 – dynamical core solves fully compressible non-hydrostatic equations in flux form

Domain: 27 km / 9 km / 3 km horiz resolution 40 vertical levels with 50 hPa top

Timing: d01 initialized d02+3 init

Physics: YSU boundary layer RRTMG longwave and shortwave radiation WSM6 microphysics

Ocean: SSTs prescribed

What is Cumulus Parameterization?

 A technique used in climate & numerical weather prediction (NWP) models to predict the collective effects of convective clouds that exist within a single grid element...

...as a function of larger-scale processes and/or conditions

Slide adapted from Kain & Baldwin:

http://www.atmo.arizona.edu/students/courselinks/spring12/atmo558/Lectures/KainandBaldwin.ppt

- Fundamental to precipitation prediction
- Changes vertical stability
- Redistributes and generates heat
- Redistributes and removes moisture
- Strongly affects surface heating

What is Cumulus Parameterization?

 A technique used in climate & numerical weather prediction (NWP) models to predict the collective effects of convective clouds that exist within a single grid element...

...as a function of larger-scale processes and/or conditions

Slide adapted from Kain & Baldwin:

http://www.atmo.arizona.edu/students/courselinks/spring12/atmo558/Lectures/KainandBaldwin.ppt

- Fundamental to precipitation prediction
- Changes vertical stability
- Redistributes and generates heat
- Redistributes and removes moisture
- Strongly affects surface heating

How does the CP scheme work in a model?

- At every grid point, predictive variables change at each time step as a function of a number of processes, including convection...
- When activated, a CP scheme computes the changes in temperature and moisture (and possibly cloud water, momentum, etc.) that would occur at each vertical level if convection developed in the given grid-point environment

$$\frac{d\theta}{dt} = P_{rad} + P_{conv} + P_{cond / evap} + P_{hdiff} + P_{vdiff} + P_{sfc}$$
water vapor
$$\frac{dq_{v}}{dt} = P_{conv} + P_{cond / evap} + P_{hdiff} + P_{vdiff} + P_{sfc}$$

$$\frac{du}{dt} + \frac{1}{\rho} \frac{\partial p}{\partial x} - fv = (P_{conv}) + P_{hdiff} + P_{vdiff} + P_{sfc}$$

*All CP schemes adjust temperature and moisture, but only some adjust momentum

Slide adapted from Kain & Baldwin: http://www.atmo.arizona.edu/students/courselinks/spring12/atmo558/Lectures/KainandBaldwin.ppt

Model Simulation: CP schemes

Model Simulations	BOTH are mass flux schemes & incl. shallow convection	Operational Models	link to microphysics
Kain-Fritsch (KFS, KFS+12) (Kain and Fritsch 1990, Kain 2004)	 Cloud, rain, ice and snow detrainment No horizontal convective momentum transport 	- COAMPS-TC 2010-14; - The GFS uses a similar scheme for shallow convection	detrainment flux
Tiedtke (TS, TS+12) (<i>Tiedtke 1989,</i> Zhang et al. 2011)	 Cloud and ice detrainment Includes horizontal convective momentum transport 	- NCAR-MMM AHW 2011-13; - ECMWF uses scheme based on Tiedtke 1989 with modifs	downorafts precip updrafts Source: ECMWF
			TS simulation accounts for entrainment of momentum into the convective plume from the surrounding air

Model Simulation: CP schemes

Model Simulations	BOTH are mass flux schemes & incl. shallow convection	Operational Models	link to microphysics entrainment/
Kain-Fritsch (KFS, KFS+12) (Kain and Fritsch 1990, Kain 2004)	 Cloud, rain, ice and snow detrainment No horizontal convective momentum transport 	- COAMPS-TC 2010-14; - The GFS uses a similar scheme for shallow convection	detrainment flux
Tiedtke (TS, TS+12) (<i>Tiedtke 1989,</i> Zhang et al. 2011)	 Cloud and ice detrainment Includes horizontal convective momentum transport 	 NCAR-MMM AHW 2011-13; ECMWE uses scheme based DO K=KTS, KTE zz = kte+1-k DO I=ITS, ITE 	downbrafts precip updrafts cu_tiedtke.F
Tiedtke with zero momentum (zTS, zTS+12)	- momentum tendencies s to zero !	RTHCUTEN(I,K,J)=(T1(I,ZZ)-T3D(I,K,J))/PI3D(I,K,J)*RDELT RQVCUTEN(I,K,J)=(Q1(I,ZZ)-QV3D(I,K,J))*RDELT ! RUCUTEN(I,K,J) =(U1(I,ZZ)-U3D(I,K,J))*RDELT ! RVCUTEN(I,K,J) =(V1(I,ZZ)-V3D(I,K,J))*RDELT RUCUTEN(I,K,J)=0 RVCUTEN(I,K,J)=0 ENDDO ENDDO	

Traditional Measures of Model Skill

little insight into differences in simulated storms!

Traditional Measures of Model Skill

little insight into differences in simulated storms!

Shape Metrics

Delineation of 20 (and 40) dBZ objects & measurement of shape

Metric	Near 0	Near 1	
Circularity	Elliptical	Circular	
Solidity	Empty	Filled	
Closure	Exposed	Enclosed	
Dispersion	Central 👲	Dispersed	
Fragmentation	Cohesive	Fragmented	

Dispersion Shape Metric *Zick & Matyas (Annals of the AAG, 2016)*

Dispersion (D)

Shape Metrics (20 dBZ)

10

STRUCTURE DURING COARSE DOMAIN SPIN-UP

Azimuthally averaged structure (Z-R plots) in 27-km simulations, time averaged 0-24 hours

68°W

Conclusions

- Traditional metrics insufficient for evaluating influence of CP scheme
- Spatial metrics reveal significant (*p*<0.05) differences in structure
- Limitations:
 - 1) Results can be counterintuitive:
 ➤ TS has smaller inner core
 ➤ more rain outside core
 ➤ higher dispersion
 - 2) Can be sensitive to threshold: convective (35-40 dBZ) vs. stratiform (20-30 dBZ)

Thank you! Questions?

Email: sezick@vt.edu

UirginiaTech College of Natural Resources and Environment

Pruitt Award

CAREER Award BCS-1053864

References

- Bassill, N. P., 2015: An Analysis of the Operational GFS Simplified Arakawa Schubert Parameterization within a WRF framework: A Hurricane Sandy (2012) Long-term Track Forecast Perspective. *J. Geophys. Res. Atmos.*, **120**, 2014JD022211.
- Han, J., and H.-L. Pan, 2006: Sensitivity of Hurricane Intensity Forecast to Convective Momentum Transport Parameterization. *Mon. Wea. Rev.*, **134**, 664–674.
- Kain, J. S., 2004: The Kain–Fritsch Convective Parameterization: An Update. *J. Appl. Meteor.*, **43**, 170–181.
- ——, and J. M. Fritsch, 1990: A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization. J. Atmos. Sci., 47, 2784–2802.
- Tiedtke, M., 1989: A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. *Mon. Wea. Rev.*, **117**, 1779–1800.
- Torn, R. D., and C. A. Davis, 2012: The Influence of Shallow Convection on Tropical Cyclone Track Forecasts. *Mon. Wea. Rev.*, **140**, 2188–2197.