An Object-Based Approach to Quantify the Influence of Cumulus Parameterization in the Spatial Structure of Precipitation in Hurricane Isabel (2003)

Stephanie Zick (Virginia Tech)
Corene Matyas (U. Florida)
Gary Lackmann (NC State)
Jingyin Tang (The Weather Company/IBM)
Background & Motivation

14B.6 Spatial Metrics that Facilitate the Comparison of Radar Reflectivity Values within Landfalling Tropical Cyclones

Radar and WRF model-simulated reflectivities in Hurricane Isabel (2003) plotted on a horizontal plane 3.5 km ASL.
Background & Motivation

14B.6 Spatial Metrics that Facilitate the Comparison of Radar Reflectivity Values within Landfalling Tropical Cyclones

Reflectivity (dBZ)
0 - 5
5.01 - 10
10.01 - 15
15.01 - 20
20.01 - 25
25.01 - 30
30.01 - 35
35.01 - 40
40.01 - 45
45.01 - 50
50.01 - 55

Figure (a) to (g) illustrate the spatial metrics and their comparison with different models:

- **Tiedtke**: more fragmented & elongated
- **Kain Fritsch**: more central & solid

Source: Dennis Mersereau
Weather Research & Forecasting (WRF) Model

WRF-ARW v3.6.1 – dynamical core solves fully compressible non-hydrostatic equations in flux form

Domain: 27 km / 9 km / 3 km horiz resolution
40 vertical levels with 50 hPa top

Timing: d01 initialized 00 |12 |TC Sep 16 2003
d02+3 init 00 |12 |TC Sep 17 2003
two model cycles

Physics: YSU boundary layer
RRTMG longwave and shortwave radiation
WSM6 microphysics

Ocean: SSTs prescribed

3-km: CP turned off

27-km: cumulus param
What is Cumulus Parameterization?

- A technique used in climate & numerical weather prediction (NWP) models to predict the collective effects of convective clouds that exist within a single grid element...

 ...as a function of larger-scale processes and/or conditions

- Fundamental to precipitation prediction
- Changes vertical stability
- Redistributes and generates heat
- Redistributes and removes moisture
- Strongly affects surface heating

Slide adapted from Kain & Baldwin:
http://www.atmo.arizona.edu/students/courselinks/spring12/atmo558/Lectures/KainandBaldwin.ppt
What is Cumulus Parameterization?

• A technique used in climate & numerical weather prediction (NWP) models to predict the collective effects of convective clouds that exist within a single grid element…

…as a function of larger-scale processes and/or conditions

- Fundamental to precipitation prediction
- Changes vertical stability
- Redistributes and generates heat
- Redistributes and removes moisture
- Strongly affects surface heating
How does the CP scheme work in a model?

- At every grid point, predictive variables change at each time step as a function of a number of processes, including convection...
- When activated, a CP scheme computes the changes in temperature and moisture (and possibly cloud water, momentum, etc.) that would occur at each vertical level if convection developed in the given grid-point environment.

\[
\frac{d\theta}{dt} = P_{\text{rad}} + P_{\text{conv}} + P_{\text{cond/evap}} + P_{\text{hdiff}} + P_{\text{vdiff}} + P_{\text{sfc}}
\]

\[
\frac{dq_v}{dt} = P_{\text{conv}} + P_{\text{cond/evap}} + P_{\text{hdiff}} + P_{\text{vdiff}} + P_{\text{sfc}}
\]

\[
\frac{du}{dt} + \frac{1}{\rho} \frac{\partial p}{\partial x} - f \nu = (P_{\text{conv}}) + P_{\text{hdiff}} + P_{\text{vdiff}} + P_{\text{sfc}}
\]

All CP schemes adjust temperature and moisture, but only some adjust momentum.

Slide adapted from Kain & Baldwin: http://www.atmo.arizona.edu/students/courselinks/spring12/atmo558/Lectures/KainandBaldwin.ppt
Model Simulation: CP schemes

<table>
<thead>
<tr>
<th>Model Simulations</th>
<th>BOTH are mass flux schemes & incl. shallow convection</th>
<th>Operational Models</th>
</tr>
</thead>
</table>
| Kain-Fritsch (KFS, KFS+12) (Kain and Fritsch 1990, Kain 2004) | - Cloud, rain, ice and snow detrainment
- No horizontal convective momentum transport | - COAMPS-TC 2010-14;
- The GFS uses a similar scheme for shallow convection |
| Tiedtke (TS, TS+12) (Tiedtke 1989, Zhang et al. 2011) | - Cloud and ice detrainment
- Includes horizontal convective momentum transport | - NCAR-MMM AHW 2011-13;
- ECMWF uses scheme based on Tiedtke 1989 with mods |

Source: ECMWF

TS simulation accounts for entrainment of momentum into the convective plume from the surrounding air.
Model Simulation: CP schemes

<table>
<thead>
<tr>
<th>Model Simulations</th>
<th>BOTH are mass flux schemes & incl. shallow convection</th>
<th>Operational Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kain-Fritsch (KFS, KFS+12)</td>
<td>- Cloud, rain, ice and snow detrainment</td>
<td>- COAMPS-TC 2010-14;</td>
</tr>
<tr>
<td>Kain and Fritsch 1990, Kain 2004</td>
<td>- No horizontal convective momentum transport</td>
<td>- The GFS uses a similar scheme for shallow convection</td>
</tr>
<tr>
<td>Tiedtke (TS, TS+12)</td>
<td>- Cloud and ice detrainment</td>
<td>- NCAR-MMM AHW 2011-13;</td>
</tr>
<tr>
<td>Tiedtke 1989, Zhang et al. 2011</td>
<td>- Includes horizontal convective momentum transport</td>
<td>- ECMWF uses scheme based</td>
</tr>
<tr>
<td>Tiedtke with zero momentum (zTS, zTS+12)</td>
<td>- momentum tendencies set to zero</td>
<td></td>
</tr>
</tbody>
</table>

Source: ECMWF

DO K=KTS,KTE
```
zz = kte+1-k
DO I=ITS,ITE
RTHCUTEN(I,K,J)=(T1(I,zz)-T3D(I,K,J))/PI3D(I,K,J)*RDELT
RQCUTEN(I,K,J)=(Q1(I,zz)-QV3D(I,K,J))*RDELT
RUCUTEN(I,K,J) = (U1(I,zz)-U3D(I,K,J))*RDELT
RVCUTEN(I,K,J) = (V1(I,zz)-V3D(I,K,J))*RDELT
RUCUTEN(I,K,J)=0
RVCUTEN(I,K,J)=0
ENDDO
```

In module cu_tiedtke.F

link to microphysics

entrainment/detrainment

mass flux

downdrafts

precip

updrafts
Traditional Measures of Model Skill

little insight into differences in simulated storms!

expect TS to be weakest:

- u, v momentum transferred vertically

TRACK: 3-km sims

INTENSITY: 27-km sims

- d02 and d03 initialized for 091600 sims
- d02 and d03 initialized for 091612 sims

expect TS to be weakest: u, v momentum transferred vertically
Traditional Measures of Model Skill

Little insight into differences in simulated storms!
Shape Metrics

Delineation of 20 (and 40) dBZ objects & measurement of shape

<table>
<thead>
<tr>
<th>Metric</th>
<th>Near 0</th>
<th>Near 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circularity</td>
<td>Elliptical</td>
<td>Circular</td>
</tr>
<tr>
<td>Solidity</td>
<td>Empty</td>
<td>Filled</td>
</tr>
<tr>
<td>Closure</td>
<td>Exposed</td>
<td>Enclosed</td>
</tr>
<tr>
<td>Dispersion</td>
<td>Central</td>
<td>Dispersed</td>
</tr>
<tr>
<td>Fragmentation</td>
<td>Cohesive</td>
<td>Fragmented</td>
</tr>
</tbody>
</table>

20 dBZ objects at Landfall
Dispersion Shape Metric
Zick & Matyas (Annals of the AAG, 2016)

\[D = \sum_{i=1}^{\text{polygons}} \frac{\text{Area}_i \left(\frac{r_{\text{centroid},i}}{500 \text{ km}} \right)}{\sum_j \text{Area}_j} \]

- Area weight
- How central?

Central

Dispersion (D)

\[\text{BT center} \quad \text{= centroid} \]

R = 0.59

Best Track Winds (m/s)
Shape Metrics (20 dBZ)

Simulated Radar Reflectivities at 3.5 km ASL at 1800 UTC 18 Sep

Polygons associated with Reflectivity Regions > 20 dBZ

Measure and compare Dispersion (D)

0 1
DISPERSION

3-km Tiedtke (TS)

higher dispersion

3-km altered Tiedtke (zTS)

lower dispersion

(f) 3-km (20 dBZ) dispersion

Time (UTC)

Dispersion

KFS TS zTS
KFS+12 TS+12 zTS+12
STRUCTURE DURING COARSE DOMAIN SPIN-UP

radial velocity (V_R)

tangential velocity (V_T)

10-m V_T

10-m V_R

d02/3 init

eyewall contracts

10-m V_T

10-m V_R

broader inflow

27-km sims
Azimuthally averaged structure (Z-R plots) in 27-km simulations, time averaged 0-24 hours

27 km TS

27 km zTS
Conclusions

- Traditional metrics insufficient for evaluating influence of CP scheme
- Spatial metrics reveal significant ($p<0.05$) differences in structure
- Limitations:
 1) Results can be counterintuitive:
 - TS has smaller inner core
 - more rain outside core
 - higher dispersion
 2) Can be sensitive to threshold:
 - convective (35-40 dBZ)
 vs. stratiform (20-30 dBZ)
Thank you! Questions? Email: sezick@vt.edu

Tiedtke (TS)

Kain Fritsch (KFS)

altered Tiedtke (zTS)

