Spatial metrics that facilitate the
comparison of radar reflectivity values
within landfalling tropical cyclones

Corene Matyas
Department of Geography, University of Florida

@ Jingyin Tang, Stephanie Zick UF

B The Weather Company/ IBM

BCS5-1053564

hurricane.geog.ufl.edu

Department of Geography, Virginia Tech



Motivation

* TC intensity forecasting uses spatial organization of clouds
(Dvorak 1975)

* Yet visual inspection commonly used to assess forecast or
simulation success for spatial extent of storm/high rainfall
regions (e.g. Gentry and Lackmann 2010, Davis et al. 2008)

 Verification statistics only compiled for TC track and intensity

* Need exists for technique to quantify spatial patterns to
compare across multiple observational datasets or with/among
simulations

* Geographers measure space!



Objectives

* Present set of metrics that measure spatial distribution of radar reflectivity
values for tropical cyclones

 Compare observed WSR-88D reflectivity values with simulated reflectivity
from WRF simulations for a landfalling hurricane (Isabel 2003)

* Matyas, C. J., Zick. S. E. and Tang, J. 2018. Using an object-based approach
to quantify the spatial structure of reflectivity regions in Hurricane Isabel

(2003): Part |I: Comparisons between radar observations and model
simulations. Monthly Weather Review, DOI: 10.1175/MWR-D-17-0077.1

* Tomorrow: Stephanie Zick details the WRF simulations from our second
MWR manuscript

* Only 5 metrics here but many more are possible



WSR-88D Mosaic

e Sites within 600 km of storm center
* Level Il reflectivity

* Preprocessing, coordinate
transformation, projection

 Reflectivity values placed onto 3 km x
3 km x 0.5 km grid

* Highest value retained, Cressman
interpolation to fill gaps

 Horizontal slice at 3.5 km

Technique profiled in Tang and Matyas
(2016) J Tech
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Every 30 min. 1800 18 Sept. — 0900 19 Sept.

|dentifying Reflectivity Regions

* Contours drawn along edges of reflectivity values

* Converted into polygons

e (Calculations of area and centroid location relative to
storm center

* |dentification of the largest polygon

e Calculation of spatial metrics

Utilized metrics from Geography, Marine Science,
Atmospheric Science, Landscape Ecology

Literature review: AghaKouchak et al. (2011), Jiao
et al. (2012), MacEachren (1985), Massam and
Goodchild (1971), Matyas (2007, 2008, 2009),
Stoddart (1965), Zick and Matyas (2016)
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5 Spatial Metrics
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Comparing Metrics Across Reflectivity Thresholds

Closure Dispersion Fragmentation
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All significantly correlated with time save 35 and 40 dBZ fragmentation
20, 25, 30 dBZ significant correlated — stratiform precipitation
35 and 40 dBZ significantly correlated — convective rainfall



Vertical Wind Shear, Storm Motion, Topography
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* Topography: increased closure 0300 - 07007

* Centroids of 20 dBZ reflectivity regions located 35°-55° left of shear vector; shifted from 5° right to 20° left
of storm motion vector

* As ET progresses, closure, circularity, solidity should decrease; dispersion, fragmentation should increase



Moisture Conditions as Isabel Experienced ET

-
(b) 1800 18 Sept.

)

/(a) ,0000 18 Sept. /
70— —(0-200 km - .
=== 200-400 km Y G~
= =400-600 km 8 -
600-800 km
800-1000 km
607 \

E -~
E - - \\
— 50— b . - 'ﬂ--.______--
= T~ Te——
[« -
- -
- -
— e
N 3 {
S (Y
40— = - ) A L ‘i -
| ‘J\ -
T
30—

(

 (d) 0006 19 Sept. *_)

. .
Y i t
= ol
]
i
) \ ;
;b.
4
- .
|
&
% .
s

I I I I
UTC 00UTC 08UTC 12UTC

T T
18 18 UTC 00 UTC 06 UTC
17 Sep 18 Sep 18 Sep 18 Sep 18

T
Sep 19 Sep 19 Sep
Time

As moisture decreases, closure/solidity should decrease and
dispersion/fragmentation should increase

Matyas (2017): 45 mm TPW extending from deep tropics
contributes to high rainfall

Throughout, western edge of 45 mm co-locates with edge
of outermost rainband

Future work to investigate these moisture tails
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T too spread out and fragmented but

outer rainbands match well

Take Home Messages:



5 overlapping times
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Comparisons with TRMM 3B42 Data
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* Spatial metrics useful to compare WSR-88D reflectivity regions to TRMM 3B42 rain Deep-Layer Wind Shear Speed | 0.26
rate regions
* Dispersion exhibited best results and strongest correlations with storm and Shallow-Layer Shear Speed | 0.26
environmental conditions _
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* All metrics strongly correlated with V,__ (-0.7 or 0.8) expected (Dvorak 1975)
 Also statistically significant correlations with moisture across the board Middle-Troposphere Moisture | 0.39
* Correlations with shear weaker, not significant for circularity High-Troposphere Moisture 0.39




Conclusions and Future Research

e Spatial metrics separate stratiform and convective regions

* As Isabel made landfall and underwent ET, rainfall regions became less solid,
enclosed less of the circulation center, and became more fragmented and
dispersed

e Storm shape sensitive to convective parameterization in WRF
* Dispersion: good metric across varying spatial scales (e.g., TRMM 3B42)

* Add displacement for improved correlation with vertical wind shear (Zhou and
Matyas, in revision JAMC()

* Consider orientation to identify possible topographical influences

* Calculate closure over multiple radial distances to separate inner core and outer
rainbands (Matyas 2015 IHC conference)
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