Changes in the Spatial Patterns of Precipitation Bands in Hurricanes Duri along the Gulf of Mexico and Atlantic Coasts of the United State

Background

Evolutionary periods of intensity change and precipitation distribution in tropical cyclones (TCs) are sometimes misrepresented in numerical weather prediction models due to the rapid nature of TC development and the importance of mesoscale and convective processes (Luitel, 2016). This study aims to a wholistic approach in contrast to previous case study research to improve our understanding of the evolution of TC precipitation in previous landfalling storms by quantitatively measuring patterns through landfall instead of qualitative assessment of shape. By better understanding changes in precipitation bands around landfall, operational meteorologists will be better equipped to aid in public preparedness and provide improved rainfall forecasts to emergency management personnel.

Objectives

1) Quantify changes in patterns of rainbands during the period around landfall along the Gulf of Mexico and Atlantic coasts of the United States from 1998 to 2014 using 3 spatial measurements (area, closure, dispersion) at 2 precipitation thresholds $(0.254 \text{ mm hr}^{-1} \text{ and } 5 \text{ mm hr}^{-1})$

2) Determine if significant differences in the 3 metrics exist between Atlantic vs. Gulf of Mexico landfalling storms

3) Cluster storms using a k-means clustering analysis to further determine variability based on landfall location

Storm Selection:

- Must have reached Tropical Storm status upon landfall
- If multiple landfalls, landfall with the most time over land will be selected
- Closest UTC observation time used for landfall (if in between, earlier time is used) and observation time series

Methods:

Precipitation area, closure (Matyas et. al, submitted, 2017), and dispersion (Zick et al., 2016) (TABLE 1) measurements at 72, 48, and 24 hours prior to landfall; at landfall; and 24 and 48 hours postlandfall for 0.254 mm hr⁻¹ and 5 mm hr⁻¹ thresholds

Area _i , (pre (≥
$C = \frac{no.10^{\circ} a}{100}$
$D = \sum_{i=1}^{NC}$

TABLE 1. NC = # isolated clusters; $r_{search} = 600$ km; $r_{centroid,i} =$ ratio of the centroid radius

Jessica Kirkland (jkirk224@vt.edu) | Stephanie Zick (sezick@vt.edu) Virginia Tech | Department of Geography | Blacksburg, VA

FIGURE 1. Map of all 62 landfalling storms (1998 – 2014) based on intensity and selection

Spline NHC positions every 3 hours Tropical Rainfall Measuring Mission (TRMM) 3B42 product, 0.25° × 0.25° resolution with 3-hour instantaneous rainrate measurements

Equation

Combined area of largest ecipitation polygons 100 pixels cluster)

ngles intersecting polygons 360

 $\frac{Area_i}{\sum_{j}^{NC}Area_j} \left(\frac{r_{centroid,i}}{r_{search}}\right)$

Results						
All Storms						
Precipitation Area (km ²) Closure (0,1) Dispersion (0,1) Threshold						
0.254mmhr ⁻	-1.02	0 x 10 ⁵	-0.204	0.166		
5mmhr ⁻¹	-1.31	6 x 10 ⁴	-0.158	0.003		
TABLE 2. Mean overall change in area, closure, and dispersion for all 62 storms based on 0.254 mm hr ⁻¹ and 5 mm hr ⁻¹ thresholds.						
		5mmhr ⁻¹				
Time Interval	Area (km ²)	Closure (0,1)	Dispersion (0,1)	Ν		
-72 to -48	3.718 x 10 ³	-0.040	-0.021	38		
-48 to -24	1.053 x 10 ⁴	0.090	-0.042	52		
-24 to Landfall	5.292 x 10 ³	0.057	0.064	59		
Landfall to +24	-2.532 x 10 ⁴	-0.276	0.037	62		
+24 to +48	-4.499 x 10 ³	-0.023	-0.076	55		
0.254mmhr ⁻¹						
-72 to -48	-3.604 x 10 ³	0.012	-0.027	38		
-48 to -24	2.024 x 10 ³	-0.022	-0.013	52		
-24 to Landfall	-1.858 x 10 ⁴	-0.016	0.040	59		
Landfall to +24	-5.800 x 10 ⁴	-0.153	0.132	62		
+24 to +48	-2.908 x 10 ⁴	-0.077	0.067	55		

TABLE 3. Mean overall change in area, closure, and dispersion based on time interval for all 62 storms based on 0.254 mm hr⁻¹ and 5 mm hr⁻¹ thresholds

5mmhr ⁻¹					
	Area (km ²)	Closure (0,1)	Dispersion (0,1)	Ν	
ET	-2.620 x 10 ⁴	-0.206	-0.083	20	
Dissipation	-1.826 x 10 ⁴	-0.203	-0.102	23	
0.254mmhr ⁻¹					
ET	-1.538 x 10 ⁴	-0.233	0.211	20	
Dissipation	-2.250 x 10 ³	-0.237	0.136	23	

TABLE 4. Mean overall change in area, closure, and dispersion based on extratropical transition (ET) or dissipation later in lifecycle for all 62 storms.

Atlantic Vs. Gulf Landfalls

Landfall	Precipitation	Area (km²)	Closure (0,1)	Dispersion
Location	Threshold			(0,1)
Atlantic	0.254mmhr ⁻¹	-5.924 x 10 ⁴	-0.132	0.156
N= 19	5mmhr ⁻¹	6.731 x 10 ³	-0.053	0.220
Gulf of Mexico	0.254mmhr ⁻¹	-1.209 x 10 ⁵	-0.235	0.171
N= 43	5mmhr ⁻¹	-2.195 x 10 ⁴	-0.204	-0.093

TABLE 5. Mean overall change in area, closure, and dispersion metrics based landfall location along the Atlantic or Gulf of Mexico coast.

5mmhr ⁻¹						
Time Interval	Area (km ²)	Closure (0,1)	Dispersion (0,1)	Ν		
-72 to -48	1.113 x 10 ⁴	-0.079	0.001	14		
-48 to -24	5.231 x 10 ³	0.074	0.072	17		
-24 to Landfall	1.706 x 10 ⁴	0.127	0.061	18		
Landfall to +24	-2.169 x 10 ⁴	-0.229	0.008	19		
+24 to +48	-5.004 x 10 ³	0.020	0.160	17		
0.254mmhr ⁻¹						
-72 to -48	-2.463 x 10 ³	0.010	-0.073	14		
-48 to -24	-1.166 x 10 ⁴	-0.044	0.024	17		
-24 to Landfall	-2.875 x 10 ³	0.034	0.009	18		
Landfall to +24	-4.624 x 10 ⁴	-0.106	0.125	19		
+24 to +48	-4.989 x 10 ³	-0.058	0.116	17		

TABLE 6. Mean overall change in area, closure, and dispersion based landfall location along the Atlantic coast for all 19 landfalling TCs.

5mmhr ⁻¹					
Time Interval	Area (km ²)	Closure (0,1)	Dispersion (0,1)	Ν	
-72 to -48	-6.028 x 10 ²	-0.017	-0.033	24	
-48 to -24	1.311 x 10 ⁴	0.098	-0.098	35	
-24 to Landfall	1.289 x 10 ²	0.026	0.066	41	
Landfall to +24	-3.161 x 10 ⁴	-0.303	0.049	43	
+24 to +48	-7.697 x 10 ³	-0.076	0.044	38	
0.254mmhr ⁻¹					
-72 to -48	-4.271 x 10 ³	0.014	0	24	
-48 to -24	8.673 x 10 ³	-0.012	-0.031	35	
-24 to Landfall	-2.543 x 10 ⁴	-0.038	0.054	41	
Landfall to +24	-7.395 x 10 ⁴	-0.173	0.135	43	
+24 to +48	-6.179 x 10 ⁴	-0.053	-0.174	38	
TABLE 7 Mean overall change in area, closure, and dispersion based landfall location in the Culf of Mexico					

for all 43 storms

3	8.670 x 10 ³	-0.064	0.031	13
4	-2.680 x 10 ⁴	-0.205	-0.021	16
5	-2.456 x 10 ⁴	-0.230	-0.125	21
		0.254mmhr ⁻¹		
1	6.914 x 10 ⁴	-0.097	0.291	2
2	-1.290 x 10 ⁵	-0.136	0.176	10
3	-4.455 x 10 ⁴	-0.134	0.102	13
4	-1.292 x 10 ⁵	-0.262	0.193	16
5	-1.203 x 10 ⁵	-0.245	0.169	21

TABLE 8. Mean overall change in area, closure, and dispersion based cluster for all 62 storms at 0.254 mmhr⁻¹ and 5 mmhr⁻¹ precipitation thresholds.

Discussion & Future Work

Using Tukey-Kramer's HSD and Kruskal-Wallis' nonparametric test for significance between means ($\alpha = 0.05$), the rate of change of precipitation area and closure were found to be statistically different before and after landfall at the 0.254 mmhr⁻¹ and 5 mmhr⁻¹ threshold levels. Only the dispersion metric for Atlantic vs. Gulf landfalling storms is statistically significant at both rain rates and neither ET or dissipation was shown to influence mean metrics around landfall (-72 to +48). Due to little differences in the average area, closure, and dispersion metrics and small sample size, it is not surprising that there are little significant differences between clusters. Figure 2, however, expresses interesting trends for the metrics at each cluster location. Future work should aim to include Global Precipitation Measurement (GPM) data to increase the sample size, including most recent storms, and compare results to TCs in other ocean basins.

Luitel, B., G. Villarini, and G. A. Vecchi, Verific
forecasting rainfall from U.S. landfalling
Matyas, C. J., S. E. Zick, and J. Tang. Using a
Reflectivity Regions in Hurricane Isabe
Model Simulations, Monthly Weather F
Zick, S. E., and C. J. Matyas, 2016: A Shape
Synoptic-Scale Precipitation Patterns i
Geographers, 106, 1217–1235.

ng Land S	Fall	inia Natura ironme	Tech al Resources ent
Results			
ends by Cluste	er		
New York New York York New York New York New York New York New York New York New Yor	Cluster 1: Area (+/+) Closure (+/-) Dispersion (+/+)	FI Me ch (5 0.25 are and fo base loca	GURE 2. an overall ange, +/- mmhr ⁻¹ , 4mmhr ⁻¹) in a, closure, dispersion r clusters d on landfall ation. N=5
Area (+/-) Closure (-/-) Dispersion (+/+)	·		
0 125 250 500	750 1,000 Miles		
5mmhr -1 Closure (0,1)	Dispersion (0,1) 0,620	N 2
-0.161 -0.064 -0.205		0.147 0.031 -0.021	10 13 16

References

cation of the skill of numerical weather prediction models in g tropical cyclones. Journal of Hydrology (Accepted 2016, In press). an Object-Based Approach to Quantify the Spatial Structure of (2003): Part I: Comparisons Between Radar Observations and Review (Manuscript submitted 2017, In review). Metric Methodology for Studying the Evolving Geometries of in Tropical Cyclones. Annals of the American Association of