
1 
 

An operational rapid intensification prediction aid (RIPA) for the western North 
Pacific 

John A. Knaff  
NOAA Center for Satellite Applications and Research, Fort Collins, Colorado 

 
Charles R. Sampson 

Naval Research Laboratory, Monterey, California 
 

and  
 

Kate D. Musgrave 
Cooperative Institute for Research in the Atmosphere, Fort Collins, Colorado 

 

1. Introduction 
 

This study develops intensification guidance 
designed to anticipate TC rapid intensification in 
the western North Pacific, a tool recently 
transitioned into operational use at JTWC.   The 
work uses a statistical-dynamical methodology, 
where in application prognostic predictors from 
dynamic forecast models are used to make 
statistical forecasts, and uses a “perfect prog” 
development approach, where analyses of the 
prognostic data, considered perfect, are used for 
statistical inference (Neumann and Lawrence 
1975). Section 2 describes the data and methods 
used to create the guidance and section 3 
describes details of the statistical-dynamical 
models used and how those models provide the 
information to make deterministic forecasts.  
Section 4 shows results based on two years of 
independent data, and section 5 summarizes and 
provides comments on the utility of our algorithm 
and some ideas for improvement.   

 
2.  Data and methods 

 
a. Independent and dependent 

variables 
 

The intensity records from JTWC’s best tracks 
provide the TC location and intensity based on a 
post-season reanalysis of all the data available 
and current operational practices.  These data are 
in the native Automated Tropical Cyclone Forecast 
system (ATCF; Sampson and Schrader 2000) 
format (available at 
http://www.usno.navy.mil/NOOC/nmfc-
ph/RSS/jtwc/best_tracks/).   The files contain 6-
hourly position, intensity, and wind radii 
information for each storm reaching tropical 
depression status in JTWC’s warnings.  In these 
files, the native units — operational units — are 

expressed in kt for intensities (i.e., 1-minute 
maximum sustained winds).  For consistency with 
operational practices, this study uses kt 
throughout.   

Table 1 contains the forecast parameters that 
are considered during the development of the 
rapid intensity change guidance. The parameters 
are grouped into three categories: 1) a subset of 
the environmental condition parameters available 
in the SHIPS (2017) developmental dataset, 2) 
storm-centered infrared (IR) imagery based initial 
conditions, and 3) real-time, best-track 
parameters.  This limited set of predictors was 
chosen based on past research on RI forecasting, 
the authors’ experience, and the many years of 
forecaster-derived insight on this topic.  

Environmental condition parameters, top 
section of Table 1, used in this application come 
from the Statistical Hurricane Intensity Prediction 
Scheme (SHIPS; DeMaria and Kaplan 1999) 
developmental dataset (see SHIPS 2017). The 
developmental data consisted of western North 
Pacific TCs during the years 2000 to 2015. Most of 
the environmental predictors (e.g., RHMD, DIVC, 
and OHC) require little explanation.  However, a 
brief description and/or justification of some of the 
less straightforward environmental predictors is 
provided. The 850- to 200-hPa layer shear (the 
vector difference between 200 hPa and 850 hPa) 
is the traditional measure of vertical wind shear, 
but it is probably less reliable in complicated 
vertical wind profiles.  To capture more of the 
variability in the wind profile, we relying on the 
generalized vertical wind shear parameter 
(GSHR).   The GSHR is the mass-weighted, root-
mean-square deviations of the winds from 4 times 
the mass-weighted, deep-layer mean winds.  The 
factor of four is used to make the values 
comparable to the more conventional measure of 
200–850 hPa, and is equal to that scalar 
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difference for the case when shear is constant with 
respect to pressure.  We also want to investigate a 
measure of upper level eddy fluxes to ascertain 
TC interactions with troughs.  This is done using 
the relative eddy flux convergence (REFC, see 
Knaff et al. 2005).  Finally, low-level temperature 
advection (TADV) can potentially be important to 
the TC intensification process (see Callaghan and 
Tory 2014), and is included for inspection.    

IR imagery is a subjective analysis tool for 
predicting the onset of RI, and it is available 
almost instantaneously at operational centers, 
thus making the imagery ideal for an application 
such as ours.  With this premise in mind, we use 
IR imagery to capture two characteristics related 
to intensification, see the middle section of 
parameters in Table 1.  The first is convective 
vigor  (PC50, PC60) and symmetry (SDO).    The 
convective vigor predictors used here, PC50 and 
PC60, were chosen based on sensitivity work 
shown in Knaff et al. (2014a), where -50oC and 
colder pixel counts improved discrimination or RI 
events in the Atlantic and East Pacific.  The storm 
size and structure is the second characteristic 
provided by the IR imagery.   Knaff et al. (2014a, 
2016) developed a normalized IR-based TC size 
(FR5), where the TC size parameter (R5 from 
Knaff et al. 2014b) is divided by its intensity based 
climatological values.  FR5, in essence, 
determines whether the TC is large or small 
relative to the global climatology.  We include this 
parameter because studies (e.g., Xu and Wang 
2015) find that small TCs have a tendency to 
intensify more quickly than larger TCs.  In addition 
to the overall TC size, we also make use of the 
radius of minimum azimuthally averaged IR 
temperature (RMNT) — a crude measure of inner-
core and eye size, the latter being inversely 
correlated to intensification (Musgrave 2011; 
Carrasco et al. 2014).    

Due to the nature of operations, non-physical 
values can arise in the real-time, best-track 
parameters, bottom section of Table 1. Since large 
changes in operational intensity estimates are 
sometimes related to inspection of time-late 
information (e.g., microwave imagery and 
scatterometry) and/or restrictions mandated by 
diagnostic techniques (e.g., Dvorak intensity 
estimate), we limit our 12-hour intensification rate 
(DV) to physically realistic values using the 
following relationship (1). 

𝐷𝐷𝐷𝐷 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚𝑚𝑚(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ∗ 0.33, 17.5),𝐷𝐷𝐷𝐷)        
(1) 

This effectively limits DV to constraints used in 
Dvorak (1984) and provides a more stable 
predictor for the linear statistical techniques used 

in this work. Including this parameterized DV 
values improved dependent model fit, and 
sensitivity tests (not shown) indicated that capping 
DV in this physically consistent way resulted in 
better modeling of RI and answering the more 
basic question has the storm been intensifying.  

Construction of the RI algorithm follows the 
same process as past RI algorithm development 
(e.g., Kaplan and DeMaria 2003; Kaplan et al. 
2010; Kaplan et al. 2015) using a combination of 
current TC conditions, environmental conditions, 
and information about the current IR structure to 
forecast the probability of various intensification 
rates.  In development, we use analyses (i.e. 
perfect prog) of environmental conditions.  In 
application, environmental conditions are based 
on forecasts. We also use two statistical methods 
to create forecasts from which we construct a two-
member consensus forecast.  The two methods 
are a linear discriminant analysis and logistic 
regression. 

 
b. Linear Discriminant Analysis 

 
Linear Discriminant Analysis (LDA) is a 

classification method originally developed in 
Fisher (1936). In LDA, a linear combination of 
variables that best separates two or more groups 
is developed.   We define just two groups for the 
LDA: Group 1 for when the intensification 
threshold is reached or exceeded, and Group 2 for 
when the intensification threshold is not reached.  
In the two-class LDA, the goal is to find the n-
dimension vector of observations that best assigns 
a case to belonging to either Group 1 or Group 2.  
In our application, we assume both groups have 
the same covariance structure, so the vector has a 
direction in n-dimensional space that maximizes 
the distance between the means of Group 1 and 
Group 2 in standardized units. To estimate 
probabilities from the discriminant function 
provided by LDA, a windowing procedure relates 
prior probabilities (i.e., dependent data) to 
discriminant function values.   In application, a 
cubic spline provides a probability given the 
discriminant function value.  

 
c. Logistic regression 

Logistic regression (LRE) is a model where 
the dependent variable is a defined category. In 
our case, “1” for reaching the intensification 
threshold and “0” for not having met the 
intensification threshold.    LRE is a special case 
of the generalized linear model, where the natural 
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log of the odds ratio or logit based on categorical 
data is fit to a linear combination of independent 
predictors (x1, …, xn) with intercept bo and weights 
(b1 ... bn) that are determined via the method of 
maximum likelihood as shown in (2). 

ln � 𝑝𝑝𝑒𝑒
1−𝑝𝑝𝑛𝑛

� = 𝑏𝑏𝑜𝑜 + 𝑏𝑏1 𝑥𝑥1 + ⋯+ 𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛        (2) 
To perform variable selection and the model 

fit, we use FORTRAN 90 code from CSIRO (2017) 
that produces linear logistic models by iteratively 
reweighted least squares.  Model fit is based 
maximum likelihood criteria.  Once fitted, the 
probability of exceeding the intensification 
threshold takes the form (3).   

𝑝𝑝𝑅𝑅𝑅𝑅 = 1
�1+𝑒𝑒−(𝑏𝑏𝑜𝑜+𝑏𝑏1𝑥𝑥1…+𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛)�

                  (3) 
The measure of quality-of-fit for logistic 

regression is in terms of deviance — a 
generalization of the idea of using the sum of 
squares of residuals in ordinary least squares to 
cases, but where the model is fit using a maximum 
likelihood criterion.   Deviance is defined as −2 
times the log-likelihood ratio of the fitted model 
compared to the full (i.e., perfect) model.  One can 
also define the percent deviance explained as 1 
minus the ratio of the fitted model deviance to the 
deviance of a model containing only the intercept, 
b0 (Knaff and DeMaria 2017).   

3. Statistical-dynamical model 
formulations 

For this work, we will examine several 
intensification thresholds.  These include 25-, 30-, 
35-, and 40-kt changes in 24 h, 45- and 55-kt 
changes in 36 h, and 70-kt changes in 48 h.  
These changes in the western North Pacific 
correspond to the 81.2, 87.0, 90.7, and 93.7 
percentiles of 24-h intensity change, the 87.7 and 
92.6 percentiles for the 36-h intensity change, and 
the 92.6 percentile of the 48-h intensity change.   
We will refer to the thresholds as RI25, RI30, 
RI35, RI40, RI45, RI55 and RI70, respectively.  
We also tried to predict the 85-kt increase of 
intensity in 72 h, but dependent fits were, in our 
opinion, not good enough to pursue real-time 
prediction.   With these thresholds, we now 
describe the statistical-dynamical models for LDA 
and LRE methods for each of the intensity change 
threshold.  

a. LDA-based models 
 

 For our intensification thresholds, we seek the 
model with the best developmental Brier Scores 
(BS; i.e., the mean square distance in probabilistic 
space) and Brier Skill Scores (BSS).  The 

calculation of BSS is provided in (4), where BSf  is 
the BS of the forecasts and BSr is the BS of the 
reference (Wilks 2006), In this case  the reference 
is climatology.  

𝐵𝐵𝐵𝐵𝐵𝐵 = 1 −  𝐵𝐵𝐵𝐵𝑓𝑓
𝐵𝐵𝐵𝐵𝑟𝑟

 (4) 

For fitting LDA models, we calculate time-
averaged values of non-static predictors up until 
each forecast lead-time.  In application, we use 
forecast values of these quantities for the 
calculation of averaged predictor values. The 
previous section provided the climatological rate of 
RI for each threshold and Table 2 provides 
statistics including climatological frequency of RI 
for each threshold, BS and BSS values, number of 
predictors used, and number of cases for each 
intensification threshold.   BSS values decrease 
with increasing rates of intensity change and 
forecast difficulty.  

 The following set of eight predictors are 
used to make forecasts for RI25, RI30, and RI35 
intensification rates: VMAX, DV, GSHR, OHC, 
PC50, SDO, POT, and DIVC.  Forecasts for RI40 
make use of the same predictors, save the PC50 
predictor.  In this case, PC60, the colder pixel 
count predictor, replaces PC50.   The remaining 
intensification thresholds, RI45, RI55, and RI70, 
use the same predictors as RI40 with the addition 
of the inner core predictor RMNT.   

Figure 1 shows the normalized (by their 
standard deviations) discriminant function weights 
[i.e.,  vector a in (2)] used for each intensification 
threshold; 24-, 36-, and 48-h lead times in blue, 
green and red hues, respectively.    It is also 
important to note that VMAX and POT predictors 
appear to be inversely related to each other.  In 
the absence of VMAX, one would expect POT to 
be positively correlated with RI, but in Fig. 1, we 
see the opposite.  Upon further inspection, we 
found a much better discrimination when we used 
both of these variables despite their collinearity.     

 
b. Logistic regression-based models 

As described in section 2, we used logistic 
regression (LRE) to create probabilistic forecast 
modes for the intensity change thresholds. For the 
development of these models, we used the same 
potential predictors (Table 1), but here we seek to 
minimize the deviance (i.e., maximize the 
deviance explained) for each intensity change 
threshold.  Table 3 presents number of predictors, 
the deviance explained, and BSS for each 
intensity change threshold.    It is interesting to 
note that the static predictors DV, PC50, and 
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RMNT, and time-varying predictors GSHR and 
OHC are selected for every lead-time.  In the LRE-
based models, the importance of the SDO 
predictor is reduced compared to the LDA model.  
Also, the LRE predictor selection included FR5 
(TC size) as a predictor for many of the lead times 
while it was not for the LDA model.   RHMD and 
TADV become important specifically for the RI70 
forecasts in the LRE model, and the reasons for 
this and other predictive relationships is now 
explored.  

Since the coefficients of the logistic regression 
have essentially the same convention and 
meaning as linear regression coefficients, we 
show the normalized coefficients for these models 
in Fig. 2.    The positively correlated RHMD 
(relative humidity in a 200-800 km annulus around 
the TC) and negatively correlated TADV 
(temperature advection within 500 km of the 
center) that are important specifically for the 48-h 
RI70 forecasts appear on the right of the figure.  
These are likely related to extra-tropical transition 
cases.  Positive temperature advection and 
decreased humidity could both be effects from an 
approaching mid-latitude trough, and so should 
suppress RI.  As is the case for LDA, the LRE 
predictors VMAX and POT are covariant.    Both 
TC size (FR5) and inner-core size (RMNT) make 
significant contributions in most models 
suggesting that smaller storms and those with 
coldest brightness temperatures near the center 
are more likely to be rapid intensifiers. 

The differences in weights and predictors in 
the LDA and LRE models suggest that the results 
of these two methods may be different.  This 
difference implies some independence in the 
methods, making them ideal for use in a 
consensus forecast.  Consensus forecasts, 
averages of forecasts from more than one method, 
have been shown to yield improvements over 
individual forecasts in a variety of fields.   
Furthermore, these studies all indicate that the 
degree of independence among consensus 
members is an important factor when combining 
forecasts; contributing to forecast improvements 
(e.g., Sampson et al. 2008, Appendix B).  With the 
goal of creating the most skillful forecasts and 
useful guidance for rapid intensification, the next 
section discusses the preprocessing and 
combining the LDA- and LRE-based models and 
creation of deterministic intensity forecasts. 

c. Preprocessing and combining 
forecasts and deterministic forecasts 

 

The LDA- and LRE-based models described 
above provide probabilistic RI forecasts for distinct 
intensification thresholds and lead times.  The 
models use slightly different predictors and 
therefore exhibit some degree of independence.  
As a result, the RI model forecasts can 
occasionally produce probabilities that are 
inconsistent, that is, a higher RI threshold (e.g., 
RI35) may have a higher probability than the lower 
RI thresholds for that lead time (RI25 and RI30).   
In such cases, probabilities of the lower RI 
thresholds are assigned the probability of the 
higher RI threshold.  In our example above, the 
probabilities associated RI25 and RI30 are 
assigned the RI35 probability.  This consistency 
check among RI thresholds is performed for both 
24- and 36-h forecasts, and for each forecast 
methodology (LDA and LRE) independently.   
Following the consistency check, we use 
probabilities from the two forecast methodologies 
for each intensification threshold to create an 
equally weighted average (CON). 

 Traditionally the rapid TC intensification 
forecast problem led to categorical/binary (Mundell 
1990) or probabilistic (i.e., DeMaria and Kaplan 
2003) forecasts.  Despite the reasoning for this 
decision, forecasters are still required to provide a 
deterministic forecast of intensity. To address the 
negative biases in RI forecasts, Sampson et al. 
(2011) demonstrates a method to provide 
deterministic intensity forecasts based on RI 
forecast probabilities. In this method, threshold 
values of the probabilistic forecast trigger 
deterministic forecasts for the valid forecast lead-
time.  For instance, when the RI35 forecast 
exceeds the threshold probability, the algorithm 
generates a twelve-hourly deterministic forecast of 
35 kt in 24 h starting with the observed intensity at 
t=0 and ending 24 h later with an intensity of the 
initial intensity plus 35 kt.   These deterministic 
forecasts are then added to the operational 
intensity consensus forecast at JTWC that is the 
most skillful intensity guidance (DeMaria et al. 
2014).  Both mean errors and biases are smaller 
when the intensity forecast aid contains 
deterministic RI aids (Sampson et al. 2011). 

The threshold probability for triggering rapid 
aids is determined using past forecasts.  For our 
purposes, and based on independent CON 
forecasts, we found the threshold of ~ 40% ± 10% 
for all the intensification thresholds.  For this 
reason, the 40% probability triggers deterministic 
rapid intensification forecast aids for RI25, RI30, 
RI35, RI40, RI45, RI55, and RI70 based on the 
CON forecast probabilities. Only the deterministic 
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member with the highest intensification rate for 
each lead-time is triggered.     

Above, we described probabilistic rapid 
intensification aids using LDA and LRE methods 
for seven intensification thresholds, RI25, RI30, 
RI35, RI40, RI45, RI55, and RI70.   We now 
discuss the independent verification of LDA, LRE 
and CON forecasts in the next section.  

 
4. Independent verification 

 
To evaluate the performance of the models 

described in section 3, we now present verification 
statistics based on almost two years of 
independent forecasts produced as part of the 
vetting process.   Verification data includes all 
forecasts from the 2016 season and forecasts 
through 27 October 2017.  We present BSS with 
the climatology of the individual intensification 
thresholds, reliability, and the verification of the 
impact of the deterministic rapid intensification 
members triggered by the probabilistic models.   

Table 4 shows the independent BSSs [%] for 
LDA, LRE, and CON forecasts for each 
intensification threshold.  This is admittedly a 
limited sample with less than two years of 
verification.  Brier Skill Scores show that the LRE 
methods are skillful for all the intensification 
threshold forecast models developed, and that the 
LDA method produces skillful forecasts for only 
the RI25 intensification threshold model.  
Consensus forecasts provided skill for all but the 
RI55 cases.  These results are discouraging for 
the LDA-based methods, but suggest that the LRE 
and CON have delivered skillful guidance.   
Results are subject to change due to changes in 
final 2017 best tracks particularly because 
modification of best track intensities is likely when 
rapid intensity changes occur.  Nonetheless, 
results are encouraging.  Experience also 
suggests that at least three independent typhoon 
seasons are typically needed to make solid 
verification inferences.     

Figure 3 shows reliability diagrams associated 
with our sample of independent forecasts.   The 
LDA methods generally produce low biased 
reliability (i.e., below the 1:1 line) where as for the 
more rare intensification thresholds LRE are 
indicative of high bias.   We wish we could report 
that the CON is the best method in this sample, 
but it appears that the LRE have better reliability 
for RI25, RI30, RI35, and RI45.  The CON 
forecasts generally produce reliabilities in between 
the LDA and LRE, but this is not always the case; 
suggesting that there may be a fair bit of 
independence between LDA and LRE methods 

(e.g., RI45 for higher probabilities and 
frequencies).  In general, these performance 
results are similar to rapid intensification aids in 
other basins. It is also interesting to note that the 
40% CON forecasts in general would trigger 
deterministic forecasts for about 15-25% of the 
cases (i.e., over confidence).    

The addition of deterministic forecast of rapid 
intensification based on the probabilistic models 
developed here should help with this issue by 
reducing the biases and possibly reducing the 
MAEs. Results based on our independent forecast 
sample used here have found this to be the case.  
Using the ideas presented in Sampson et al. 
(2011) and a 40% triggering probability, results in 
a dramatic decrease in the biases show a 
reduction in MAE for 24-, 36-, and 48-h forecasts. 
These results represent significant improvement of 
season intensity bias given the slow rate of 
change in intensity forecast performance.  Table 5 
shows the intensity verifications of the intensity 
consensus with the deterministic rapid 
intensification member versus those without.   The 
12- and 24-h periods have enough cases to get a 
sense of the performance.  The improvement in 
MAE at 24 h is 0.4 kt and the expected low bias 
for RI cases is reduced by 1.9 kt.  The 
improvements in MAE are very small or negative, 
but the reduction in bias is relatively large. The 
performance at the 36- and 48-h periods is 
promising, especially on inspection of the 
individual cases, but there are too few cases to 
make any firm conclusions other than the biases 
are reduced. 

The improvements in MAE are small for these 
time periods, but this is partly a construct of 
availability.  The RI aids at 24 h are available in 
15% of all forecasts.  As discussed in Sampson et 
al. (2011), raising the threshold above 40% 
improves the performance in terms of MAE and 
lessens the bias correction, but also reduces the 
availability.  One can think of the 40% threshold as 
a tuning knob, turn it up and you get better MAEs, 
less bias correction, and fewer RI forecasts 
nudging the consensus.  Turn it down and you 
typically increase the MAE, improve the bias 
correction, and more often nudge the consensus.   
In this work, we turned the knob, up to 50% and 
noticed the same behavior as discussed in detail 
in Sampson et al. (2011, their Figure 2), and 
decided that 40% would also work in this basin.    

  
5. Summary 

 
This manuscript describes the development of 

TC rapid intensification models for the western 
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North Pacific Basin.  We chose seven 
intensification threshold including 25-, 30-, 35-, 
and 40-kt intensity changes in 24 h, 45- and 55-kt 
intensity changes in 36 h, and 70-kt intensity 
changes in 48 h, also referred to as RI25, RI30, 
RI35, RI40, RI45, RI55, and RI70, respectively.  
The models were developed as probabilistic 
algorithms following work in other basins and 
using two methodologies: Linear Discriminant 
Analysis (LDA) and Logistic Regression (LRE).  
The years 2000 to 2015 were used in the 
development, and then independent testing was 
performed with the years 2016 and 2017.    
Equally-weighted averages of the LDA and LRE 
probabilities are computed (CON), and those are 
then used to trigger deterministic forecasts for 
each of the seven intensification thresholds when 
the probabilities reach 40%.  

Dependent LDA models had Brier Skill Scores 
ranging from 13-24% that indicated they could 
produce skillful (relative to climatology) 
probabilistic forecasts.  Dependent LRE models, 
on the other hand, explained a little less than 30% 
of the deviance and had slightly better BSSs than 
LDA models.   In independent tests, LDA models 
with the exception of RI25 failed to produce skillful 
forecasts, but both LRE and CON produced skillful 
probabilistic forecasts.  We also examined 
reliability diagrams for independent forecasts of 
LDA, LRE, and CON probabilities.  The reliability 
results are typical for the rapid intensification 
problem, resulting in forecasts that are over 
confident (e.g., Kaplan et al. 2015).  The over 
confidence suggests that the 40% CON forecast 
threshold would ultimately trigger deterministic 
forecasts for about 15% of the cases.   

In independent verification with the 2016 and 
2017 data, the JTWC intensity consensus that 
includes deterministic RI guidance clearly shows 
reduced negative biases and somewhat improved 
MAEs (i.e., reduction in RMSE), indicating that 
some independence and skill are garnered by 
including them in the consensus.  The 
deterministic RI aids should also give forecasters 
improved intensity guidance spread, though this is 
yet to be shown. 

  
 
Acknowledgements:  This work was funded by 

the Office of Naval Research through the Broad 
Area Announcement # N00173-17-S-BA01 and 
Program Elements 0602435N.   The authors 
would like to thank Alan J. Miller for the software 
used to create the logistic regression models.  The 
views, opinions, and findings contained in this 
report are those of the authors and should not be 

construed as an official National Oceanic and 
Atmospheric Administration or U.S. Government 
position, policy, or decision. 

 
 
REFERENCES: 
 

Carrasco, C.A., C.W. Landsea, and Y. 
Lin, 2014: The influence of tropical cyclone 
size on its intensification. Wea. 
Forecasting, 29, 582–590, doi:10.1175/WAF-
D-13-00092.1  

CSIRO, 2017:  Software from Alan J. Miller.  
[Available on-line at 
http://wp.csiro.au/alanmiller/ ] 

DeMaria, M., and J. Kaplan, 1999: An updated 
statistical hurricane intensity prediction 
scheme (SHIPS) for the Atlantic and eastern 
North Pacific basins. Wea. 
Forecasting, 14, 326–337.  

Dvorak, V. F., 1984: Tropical cyclone intensity 
analysis using satellite data. NOAA Tech. 
Rep. 11, 45 pp. [Available from 
NOAA/NESDIS, 5200 Auth Rd., Washington, 
DC 20333.] 

Fisher, R. A., 1936: The use of multiple 
measurements in taxonomic problems. Annals 
of Eugenics, 7, 179–188. doi:10.1111/j.1469-
1809.1936.tb02137.x 

Kaplan, J., and M. DeMaria, 2003: Large-scale 
characteristics of rapidly intensifying tropical 
cyclones in the North Atlantic basin, Wea. 
Forecasting, 18, 1093–1108.  

Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A 
revised tropical cyclone rapid intensification 
index for the Atlantic and east Pacific 
basins. Wea. Forecasting, 25, 220–241. 

Kaplan, J., C. M. Rozoff, M. DeMaria, C. R. 
Sampson, J. P. Kossin, C. S. Velden, J. J. 
Cione, J. P. Dunion, J. A. Knaff, J. A. 
Zhang, J. F. Dostalek, J. D. Hawkins, T. F. 
Lee, and J. E. Solbrig, 2015: Evaluating 
environmental impacts on tropical cyclone 
rapid intensification predictability utilizing 
statistical models. Wea. Forecasting, 30, 
1374–1396.  doi:10.1175/WAF-D-15-0032.1  

Knaff, J. A., and R. T. DeMaria, 2017: Forecasting 
tropical cyclone eye formation and dissipation 
in infrared imagery. Wea. 
Forecasting, 32, 2103 – 2116, 
doi:10.1175/WAF-D-17-0037.1  

Knaff, J. A., M. DeMaria, S. P. Longmore, and R. 
T. DeMaria, 2014a: Improving tropical cyclone 
guidance tools by accounting for variations in 
size. 31st Conf. on Hurricanes and Tropical 
Meteorology, San Diego, CA, Amer. Meteor. 



7 
 

Soc., 51. [Available online at 
https://ams.confex.com/ams/31Hurr/webprogr
am/Paper244165.html.] 

Knaff, J. A., S. P. Longmore, and D. A. Molenar, 
2014b: An objective satellite-based tropical 
cyclone size climatology. J. Climate, 27, 455–
476. doi:10.1175/JCLI-D-13-00096.1  

Knaff, J. A., C. J. Slocum, K. D. Musgrave, C. R. 
Sampson, and B. R. Strahl, 2016: Using 
routinely available information to estimate 
tropical cyclone wind structure. Mon. Wea. 
Rev., 144, 1233-1247. doi:10.1175/MWR-D-
15-0267.1  

Knaff, J. A., C. R. Sampson, and M. DeMaria, 
2005: An operational statisical typhoon 
intensity prediction scheme for the Western 
North Pacific.Wea. Forecasting, 20(4), 688-
699. 

Mundell, D. B., 1990: Prediction of tropical cyclone 
rapid intensification events. M.S. thesis, Dept. 
of Atmospheric Science, Colorado State 
University, 186 pp. [Available from Dept. of 
Atmospheric Science Colorado State 
University, Fort Collins, CO 80523.]. 

Musgrave, K. D., 2011: Tropical cyclone inner core 
structure and intensity change, PhD 
dissertation, Dept. of Atmospheric Science, 
Colorado State University, 103 pp. [Available 
from Dept. of Atmospheric Science Colorado 
State University, Fort Collins, CO 80523.]. 

Neumann, C.J. and M.B. Lawrence, 1975: An 
operational experiment in the statistical-
dynamical prediction of tropical cyclone 
motion. Mon. Wea. Rev., 103, 665–673,DOI: 

10.1175/1520-
0493(1975)103<0665:AOEITS>2.0.CO;2 

Sampson, C. R., and A. J. Schrader, 2000:  The 
Automated Tropical Cyclone Forecasting 
System (Version 3.2).  Bull. Amer. Meteor. 
Soc., 81, 1231–1240. 

Sampson, C. R., J. Kaplan, J. A. Knaff, M. 
DeMaria, and C. Sisko, 2011: A deterministic 
rapid intensification aid. Wea. Forecasting, 26, 
579–585.  

Sampson, C. R., J. L. Franklin, J. A. Knaff, and M. 
DeMaria, 2008: Experiments with a Simple 
Tropical Cyclone Intensity 
Consensus. Weather and Forecasting, 23, 
304–312. 

SHIPS, 2017: “SHIPS developmental data.” 
[Available on-line at 
http://rammb.cira.colostate.edu/research/tropic
al_cyclones/ships/developmental_data.asp] 

Wilks, D. S., 2006: Statistical Methods in the 
Atmospheric Sciences: An Introduction, 
Second Edition, 627 pp., Academic, San 
Diego, Calif. 

Xu, J., and Y. Wang, 2015: A statistical analysis 
on the dependence of tropical cyclone 
intensification rate on the storm intensity and 
size in the North Atlantic. Wea. 
Forecasting, 30, 692–701,  doi:10.1175/WAF-
D-14-00141.1  

 

  

  



8 
 

 

Table 1. Potential predictors for algorithms to predict the probabilities of rapid intensification at various 
intensification rate thresholds.  Predictors include forecast parameters (Environmental Predictors) and 
initial conditions (IR Predictors and Best Track/Advisory-based Predictors). Static predictors (i.e. those 
available only at t=0) are italicized.  

Acronym Description 
Environmental Predictors (time averaged from t=0 to time of the forecast) 
GSHR 850 hPa to 200 hPa generalized wind shear calculated as the mass-weighted root-

mean-square deviations of the winds from the mass-weighted deep-layer mean winds 
times a factor of 4 calculated in a 200-800 km annulus (Knaff et al. 2005) 

OHC Oceanic Heat Content between the surface and the depth 26oC isotherm (Shay et al. 
2000, and references within) 

RHMD 700-500 hPa relative humidity averaged within a 200-800 km annulus 
DIVC 200-hPa divergence following the storm calculated in 500 km circle centered on the TC 
POT Potential intensification calculated from the potential intensity as a function of SST at 

storm center and the current intensity (at t=0) 
REFC Average relative eddy momentum flux convergence (m/sec/day) calculated in 100-600 

km annulus vs. time 
TADV The temperature advection between 850 and 700 hPa averaged from 0 to 500 km 

calculated from the geostrophic thermal wind 
IR Predictors 

PC50 Percentage of IR pixels colder than -50oC within a 50-200 km annulus 
PC60                        Percentage of IR pixels colder than -60oC within a 50-200 km annulus 
SDO Standard Deviation of IR brightness temperatures 100-300 km 
RMNT Radius of minimum brightness temperature (0-150 km) 
FR5 The deviation of IR-based TC size (R5) from the climatological population as a function 

of TC intensity  
Best Track / Advisory-based Predictors 

VMAX Current TC intensity (t=0) 
DV 12-hour change in TC intensity, which is limited by the following function,𝐷𝐷𝐷𝐷 =

𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚𝑚𝑚(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ∗ 0.33, 17.5),𝐷𝐷𝐷𝐷)     
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Table 2. Statistics associated with the LDA models for various intensity change thresholds. 

Intensification 
Threshold 

Climatological   
Frequency (%) 

BS BSS Number of 
Predictors 

Number of 
Cases 

RI25 18.8 1162.8 23.8 8 5447 
RI30 13.0 890.4 21.1 8 5396 
RI35 9.3 681.0 19.4 8 5301 
RI40 6.5 519.7 15.0 8 5211 
RI45 12.3 871.4 19.5 9 4432 
RI55 7.4 576.4 15.8 9 4166 
RI70  7.4 594.7 13.0 9  3290 

 

Table 3.  Number of predictors and percent deviance explained by dependent logistic regressions for the 
intensification thresholds used in this study.  Brier Skill Scores are also provided for comparison with 
LDA-based models in the column labeled BSS.   

Intensity 
Change 

Threshold 

Number of 
Predictors 

Percent 
Deviance 

Explained 

BSS 

RI25 10  27  26.5 

RI30 8 28 24.4 

RI35 9 29 21.4 

RI40 9 28 22.2 

RI45 10 26 21.5 

RI55 9 28 18.0 

RI70 9 24 12.4 

 

Table 4.   Probabilistic RI algorithm evaluation.  Data set is independent and includes western North 
Pacific cases from January 1, 2016 through October 27, 2017.    

 RI25 RI30 RI35 RI40 RI45 RI55 RI70 
# Forecasts 678 678 678 678 601 601 531 

% Climate 12 13 9 6 12 6 4 
 % Observed 14 10 7 5 10 6 5 
LDA BSS (%) 2 -4 -32 -10 -19 -27 -5 
LRE BSS (%) 18 13 10 9 11 4 9 
CON BSS (%) 13 8 2 5 4 -2 5 
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Table 5.   Deterministic intensity consensus evaluation.  ICNW is the JTWC operational consensus that 
includes the deterministic RI aids while ICNC is the same consensus without RI aids.  Cases include only 
those where at least one of the deterministic RI aids for a given forecast time was available.  Data set is 
independent and includes western North Pacific cases from January 1, 2016 through October 27, 2017.    

Consensus Statistic 12h 24h 36h 48h 

  127 125 58 14 

ICNW MAE (kt)/Bias (kt) 8.9/-3.7 13.9/-7.2 18.8/-12.8 16.5/-4.8 

ICNC  MAE (kt)/Bias (kt) 9.0/-4.6 14.3/-9.1 18.7/-14.2 14.4/-6.9 

Percent 
Improvement 

MAE (%)/Bias (%) 1.0/19.6 2.7/21.0 -0.5/9.9 -14.6/30.4 
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Figure 1.  Normalized discriminant function coefficients for LDA models of (blue hues) RI25, RI30, RI35, 
and RI40, (green hues) RI45 and RI55, and (red) RI70.  Predictors, which are listed just under the y=0 
line, are described in Table 1.  

 

 
Figure 2.  Normalized discriminant function coefficients for LRE models of (blue hues) RI25, RI30, RI35, 
and RI40, (green hues) RI45 and RI55, and (red) RI70.  Predictors, which are listed just under the y=0 
line, are described in Table 1.  
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Figure 3. Reliability diagrams, (blue) LDA, (red) LRE and (green) CON, based on independent 
forecasts are shown. The top row shows reliability diagrams for RI25, RI30, RI35, and RI45, and the 
bottom row displays RI45, RI55, and RI70.   Note the distributions of cases are shown in the upper left 
of each panel and have a log scale. 

 


