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Power-Law distributions have shown to be useful 
tools for describing rare, high impact “black swan” 
events (Hernandez 2014). The Pareto distribution 
(e.g., Hardy 2010) describes the tail of the 
distribution of historical hurricane losses. A 
separate Power-Law distribution, the Zipf 
distribution (Newman 2005), fits the tail of the size 
distribution of populated places. The sizes of the 
largest populated places are inversely proportional 
to their rank so that the Zipf distribution is effectively 
a Pareto distribution with unit exponent. Hernandez 
(2014) uses an idealized hurricane catastrophe 
model (e.g., Grossi and Kunreuther 2005), Z-CAT, 
to simulate damage on a Zipf distributed coastal 

population. Z-CAT demonstrates that the tail of the 
distribution (representing the largest impacts) 
inherits its shape from the distribution of assets 
along the coast. These losses account for 
approximately 2/3 of historical losses but only ~10% 
of damaging events.  
 
Statistical analysis of damage shows that nationally 
aggregated US hurricane losses normalized for 
inflation, population and individual wealth has been 
constant since 1900 (Pielke et al. 2008). Detrended 
nominal damage increases at approximately the 
same rate as the US Gross Domestic Product; ~ 6% 
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increase. Yet, normalized and detrended US 
damage are approximately log-normal with 
logarithmic standard deviations equivalent to 
factors of 10 to 12 about their geometric means. Z-
CAT cannot reproduce this large variability.  
One way to look into the entire distribution of 
damage, as opposed to just the tail, is to use 
exceedance probabilities, the probability that 
damage will exceed certain value. Exceedance 
curves for both normalized and detrended nominal 
damage distributions show that both are lognormal 
and leptokurtic. Figure 1a shows the exceedance 
probability for normalized hurricane damage per 
season. The standard deviation is .94 with a 

skewness of -.02457 and a kurtosis of 2.2481 
making it leptokurtic. Figure 1b shows the 
exceedance probability for detrended nominal 
hurricane damage by season. Here, the standard 
deviation is .89 with a skewness of -.1093 and a 
kurtosis of 2.07. Both distributions are lognormal 
and leptokurtic with slightly negative skewness.  
 
Z-CAT is an idealized hurricane catastrophe model 
developed at FIU. It focuses not upon detailed 
physical representation of Tropical Cyclone (TC) 
hazards, but rather on gaining fundamental insight 
into how the hazard characteristics translate into 
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Figure 1. Exceedance Probability curves for (a) normalized Damage and (b) detrended nominal damage. Points 

indicate actual damage and the solid curve is the compliment of the error function with the same logarithmic mean 

and standard deviation. 



impacts. Commercial catastrophe models are used 
to assess risks due to geophysical hazards. 
Hurricane catastrophe models represent details of 
inventory, peril, vulnerability and cost. The 
inventory module is a digital list of insured property. 
The peril module represents the tropical cyclone’s 
physical attributes including size, intensity, and 
translation speed. Vulnerability is calculated using 
an S shaped function that returns percent damage 
as a function wind speed. The cost or total damage 
is then calculated from percent damage and repair 
or replacement prices (Grossi Kunreuther 2005). 
Through the use of a modified Z-CAT, we aim to 
understand what factors affect the shape of this 
exceedance probability curve. What causes the 
curve to deviate from being completely lognormal? 
What factors make the curve more leptokurtic about 
the mean damage?  
Current population size distributions show log-
normality much like the distribution of losses but 

with a smaller variance. Here we reassess US 
aggregated loss under the hypothesis that the log 
normal distribution of losses is inherited from a log-
normal distribution of assets proportional to 
population rather than from a Zipf distribution. 
Population is platykurtic and less skewed than 
damage (Figure 2). The standard deviation is .73 
with a skewness of -.0112 and a kurtosis of 3.1049, 
although this value is very close to the threshold of 
3. The distribution of population on the United 
Stated coast could be a driver for lognormal 
distribution of assets. To test this, we will begin with 
the actual distribution of coastal population and 
perhaps to scale it for per capita wealth as a 
function of population. 
 
Another factor that is likely to shape the statistical 
distribution of damage is the geographic variability 
of risk along the coast. While, the former version of 
Z-CAT did not take this effect into consideration, 

into the distribution of frequency of landfalls can be 
applied to the model. 
 
Climactic variability can also play a large role in the 
distribution of damage. The teleconnections 
associated with ENSO have shown to suppress 
tropical cyclone activity when ENSO is in its warm 
phase (Maue 2011) and enhance them in the cool 
phase. Similarly cool and warm phases of the AMO 
have also led to a suppression and enhancement 
of Atlantic tropical cyclone activity. (Trenberth and 
Shea 2006)(Lewis et al. 2001)  We hypothesize that 
the phase of ENSO and AMO should decrease 
mean damage, increase variance, and cause 
negative skewness. The HURDAT climatology will 
support development of another function to account 
for the effects of ENSO and AMO. 
 
A final and perhaps overwhelmingly important 
factor is flooding. The previous version of Z-CAT 
simulates only windstorm losses. Simulating inland 
flooding on an idealized model can be done by 
applying Kraft’s “rule of thumb” (Kidder et al. 2005). 
It approximates storm total rainfall in inches as 100 
divided by the translational speed of the storm in 
knots. The HURDAT climatology provides 
information to develop a function for translational 
speed of storms at landfall. Moreover, storm surge 
damage contributes significantly to losses as well. 
The areas at risk within each population center are 
mapped out and subjected to estimated surge 
based upon the size and speed of the storm. 
 
The application of a hurricane catastrophe model 
that uses the actual distribution of coastal cities as 
well as geographic, inter-seasonal, multi-decadal or 
secular variations of landfall intensity and frequency 
will aid in understanding the peril. A salient result 
from the previous study was that damage would 
need to double on a century timescale to attain 
significance using standard nonparametric tests. 
Yet, increasing hazards may become financially 
significant before they become statistically 
significant. An example is the impact of Hurricane 
Maria on Puerto Rico. How would using log 
normally distributed assets change this? How 
rapidly would hurricanes characteristics need to 
change to produce significant trends in losses? 
How does the intensity and frequency of the peril 
affect the damage trend?  If more threatening perils 
become more frequent, how would building 
standards have to improve to compensate? How 
would insurers, regulators, and policy holders 
address the conflict between the actual changes in 
peril that may or may not be masked by long term 
natural variability such as ENSO and AMO.

   

Figure 2. Exceedance probability of coastal city 

populations. 
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