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1. INTRODUCTION

The rapid intensification (RI) event is an important
scientific issue, as well as a very difficult problem, in
tropical cyclone (TC) intensification. In general, the RI is
defined as when the central pressure decreased by about 42
hPa or the maximum surface wind speed increased by over
30 kt within 24 h (Holliday and Thompson 1979; Kaplan
and DeMaria 2003).

From many previous studies on RI, a common feature
is that within TC inner-core region, deep convective cells
are well identified. These deep convective cells have
generally colder brightness temperature (BT) than that of
peripheries (Browner et al. 1977; Gray and Jacobson 1977,
Muramatsu 1983; Steranka et al. 1986; Heymsfield et al.
2001; Bedka et al. 2010; Guimond et al. 2010, 2016;
Harnos and Nesbitt 2011; Jiang 2012; Kieper and Jiang
2012; Monette et al. 2012; Dunion et al. 2014). Once
deep convective cells occur, it can largely contribute to the
formation of cirrus clouds in the upper troposphere (Merritt
and Wexler 1967). These thick clouds can play a role in
providing warmer environment beneath that cloud regions.
This could be one of the favorable conditions for the
development of deep convective cells especially within
eyewall region because the upper troposphere tends to be
destabilized throughout nighttime by radiative cooling.

This study examines how the diurnal variation of deep
convective cells serves as a precursor of RI with respect to
five RI TCs (Nepartak 1%, Meranti 14" Chaba 18",
Songda 20", and Nockten 26') in 2016.

2. DATA

In this study, deep convective cells and vertical wind
shear are examined using Himawari-8 satellite imagery and
ERA-Interim data. And for the better reliability with

respect to best track, three different best tracks, i.e., Japan
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Meteorological Agency, Joint Typhoon Warning Center
(JTWC), and Korea Meteorological Administration,
respectively, are averaged. In order to convert 1-minute
averaged maximum surface wind speed of JTWC to 10-
minute averaged maximum surface wind speed, the
equation used in international best track archive for climate

stewardship has been applied, i.e., V10=V1x0.88.

3. THE DEFINITION OF ANVIL CORE AND
AREA

Based on the 11.2 pm infrared channel, the anvil core
and area have been defined as follows: for example, if BT
< 195 K, that area indicates the existence of anvil core.
Meanwhile, if 195 K < BT < 225 K, this area indicates

anvil area.

4. THE RELATIONSHIP BETWEEN ANVIL
CLOUDS AND TC INTENSIFICATION

Figure 1 shows the anvil core and area analyzed
within 300 km radius with respect to five RI cases. On
the tropical depression stage, most RI cases seem to have
temporary and sporadic anvil core. This feature can be
often found in any tropical depressions. However, after it
becomes tropical storm intensity, the anvil core and area
tend to be further organized and well maintained especially
during nighttime.  Although Songda has very small
amount of anvil core percentage, it has comparable amount
for anvil clouds (Fig. 1d). In other words, if one or
several anvil cores exist, it may be enough to help TC
intensification. This is designated as a first peak of the
anvil cloud development. As a successive development,
if there is a second peak during nighttime, all RI cases have
undergone RI process. Meanwhile, the anvil area tends to
be greatly expanded about 6 h after the anvil core
development in the upper troposphere. As a result, such
anvil area, which may also include cirrus clouds so-called

“cirrus-shield”, is apt to be maximized during daytime. In

this situation, the atmospheric columns beneath the thick



cloud region can be maintained as warmer environment
due to latent heat release induced by deep convection.
This may be effective for the destabilization in the upper

troposphere during nighttime.

5. ANANALYSIS OF MEANBTWITHTC
RADII

Figure 2 shows the results for mean brightness
temperature according to TC radii. On the tropical
depression stage, the inner-core region has warmer BT
with small anvil cores (Figs. 1, 2). After 1 or 2 days, the
inner-core BT has been significantly become colder than
that of previous time. This period corresponds to the first
peak of anvil core as shown in Fig. 1. During daytime,
the large anvil area produced by anvil core during last
nighttime is able to cover the inner-core as well as most
eyewall area. Although BT has been slightly increased
during daytime, the inner-core still remains cold enough,
i.e., below 200 K (Fig. 2). With this environment, all RI
cases have identically occurred on the second peak period
mainly during nighttime. In addition, at the end of RI
period, the RS0 mean BT shows warmer BT environment.
This warmer BT indicates the existence of small eye

structure because the eye region has clear sky, which is

normally high BT value.

6. CONCLUDING REMARKS

In this study, using Himawari-8 satellite imagery, the
anvil core and area have been examined to see whether it
can be an indicator for RI. Based on the current results,
five RI cases satisfying two RI definitions show the same
characteristic before the onset of RI and after the onset of
RI. In the real atmosphere, the diurnal variation seems to
have a large influence on the development of deep
convection. Overall, five RI cases were also under weak
or moderate vertical wind shear environment during the RI
period (not shown). We think that this diurnal variation
for anvil core and area is an important RI precursor if they

show the first and second peak before and after the onset of

RI under the favorable largescale environment.
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Fig. 1. The analyzed anvil core and area for RI TCs: (a) Nepartak (1),

and (e) Nockten (26™), respectively. The thick solid

vertical dashed-line indicates the RI period, i.e.
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The color lines indicate mean BT: for example, TC center < r < 50 km
, respectively.

and 150 km <r <250 km in blue
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Fig. 2. As in Fig. 1, but for mean BT with TC radii.
50 <r <150 km in dark blue

in red,



