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1. Introduction 

Heavy precipitation is a major hazard in landfalling tropical cyclones (TCs). Historically, heavy rainfall 

has induced freshwater floods and mudslides during TC landfalls, accounting for 27% of deaths and 

devastating property (Rappaport 2014). The impacts of TC rainfall often cover a larger area and 

extend further inland than other TC hazards, including winds and storm surge. In addition, rainfall 

associated with TCs is dependent on factors other than maximum intensity. For example, a slow-

moving TC can produce more rainfall than a fast-moving TC, regardless of maximum intensity. In 

other words, rainfall hazards may be higher in a tropical storm than in a major hurricane. In 2017, 

three hurricanes made landfall in the U.S. – Harvey, Irma, and Maria. Hurricane Harvey made landfall 

as a category four hurricane on the Saffir-Simpson scale and delivered over 60 inches of rainfall in 

parts of Texas. Harvey devastated Texas and Louisiana for 4 days, causing historical flooding and at 

least 68 deaths. This hurricane also caused the second highest economic loss in U.S. history (Blake 

and Zelinsky 2018). 

Previous work has focused on quantitative precipitation forecasts (QPF) validation techniques to 

evaluate the utility of rainfall forecasts. Ebert (2003) verified QFP using bias score and equitable 

threat score (ETS; Stanski et al. 1989; Wilks 1995). Several models, including the National Centers 

for Environmental Prediction (NCEP) Eta model and the European Centre for Medium Range 

Forecasts (ECMWF) Integrated Forecasting System (IFS), were verified against satellites and rain 

gauge data in the regions of the United States, Germany, and Australia. Marchok (2006) developed a 

standard scheme for validating QPF of landfalling TCs. This scheme includes three parts: the pattern 

matching ability, mean rainfall and volume matching skill, and extreme amount capturing capability. 

Lonfat (2004) studied Tropical Rainfall Measuring Mission (TRMM) data and provided guidance of 

climatology rainfall features. Lonfat’s study also suggested the usage of a decibel rain rate (dBR) 

scale to provide validations of probability distribution functions (PDFs) or contoured frequency by 

radial distance (CFRD) methods. To validate rainfall from Hurricane Harvey, this study will utilize 

several methods from previous studies and will create new schemes to verifying QPF in numerical 

weather prediction model output.  

The Hurricane Weather Research and Forecasting (HWRF) system is a customized hurricane/tropical 

storm model including the WRF model software infrastructure, and the Non-Hydrostatic Mesoscale 

Model on the E Grid (NMM-E) dynamic core (Biswas et al. 2017). HWRF is a nested model with a 18-

km parent domain and 6- and 2-km movable nested domains. With support from the Hurricane 

Forecast Improvement Project (HFIP), the NOAA/AOML/HRD developed and maintained an 

experimental “Basin-Scale HWRF” model (HWRF-B; Zhang et al. 2016; Alaka et al. 2017), which 

produced low track forecast errors in 2017 when compared with other NOAA models. This study 

validated the 2017 real-time version of Basin-Scale HWRF (HB17). Due to the high dependence of 

precipitation on TC track, HB17 is leveraged as a rainfall research tool to evaluate precipitation 

performance on Harvey. The ultimate goals of this project are to evaluate TC rainfall performance in 

NWP and to create new probabilistic rainfall guidance for TC landfalls, thereby fulfilling HFIP 

objectives. Section 2 describes the methodology of this project, including the model, datasets, and 

forecasts of interest. Section 3 discusses the rainfall performance in HWRF-B forecasts and 

introduces NWP-based probabilistic guidance. Conclusions are provided in Section 4. 

 



2. Methodology 

2.1 Dataset  

The purpose of this study is to evaluate rainfall performance of HB17 in real time. HRD maintains this 

experimental dynamic model and has operated it as an HFIP real-time demo for the past several 

hurricane seasons. The HB17 model resolution is 18-6-2 km and uses Ferrier-Aligo (FA) scheme for 

microphysics parameterization. This scheme is designed for improving deep convective cloud 

simulations, especially in 1-4 km high-resolution models (Biswas et al. 2017).  In this study, we 

retrieved 3-hourly data with 2-km spatial resolution for azimuthal analyses and swath data for pattern 

analysis. To consider a model useful, model prediction needs to outperform climate model and 

persistence forecasts (Ebert 2003). R-CLIPER (RCLP) is a Rainfall Climatology and Persistence 

Model provided by HRD. This climatology-based model predicts rain rate for every 0.1 hour (6 min) 

based on storm location and intensity. The resolution of RCLP is 0.25 degree.  

 

To evaluate model performance, two state-of-the-art observational datasets are considered as true 

rainfalls here. National Stage IV QPE product (ST4) is radar and rain gauge precipitation analyses 

from NCEP. This product provides hourly observational rainfall with 4 km resolution. The other 

dataset is Integrated Multi-Satellite Retrievals for GPM (IMERG). This is a product from NASA’s 

Global Precipitation Measurement (GPM). This mission utilizes available rainfall-related satellites and 

estimates from their passive microwave to produce 3-stage IMERG datasets - Early, Late, and Final. 

In this study, we only consider final versions of IMERG as it has the highest accuracy among these 

three datasets due to an adjustment of ground-based rain gauge data. Rain gauge data is considered 

as the most accurate observation of rainfall and provides the the best estimation especially where 

gauge density is reasonable (Ebert 2003). IMERG resolution is 0.1 degree and output frequency is 

0.5 hour. Besides these two observational datasets, HURDAT2 is used to determine storm centers 

and tracks for observations. HURDAT2 is also known as Best Track data provided by NOAA/National 

Hurricane Center.  

 

2.2 Selected Cycles 

There are three cycles of Hurricane Harvey selected for this study based on HB17’s track 

performance – 00 UTC 24 Aug 2017, 18 UTC 24 Aug 2017, 00 UTC 25 Aug 2017. As hurricane 

precipitation is highly concentrated along the track, an outstanding track performance is the first 

requirement of precipitation analyses. The left panel of Figure 1 highlights how the selected cycles’ 

forecasts produced better track than the others. In addition to three deterministic forecasts, this study 

also discusses the probabilistic prediction of HB17. For probabilistic rainfall, we use 21 members of 

an ensemble run at 00 UTC 25 Aug 2017, shown as the right panel of Figure 1. 

  
Fig. 1. Selected cycles of this study. Left panel: HB17 Harvey track forecasts in Gulf of 

Mexico. Colored tracks are selected cycles of this study. Red line is the track forecast at 00 

UTC 24 Aug 2017; green one is at 18 UTC 24 Aug 2017; blue one is at 00 UTC 25 Aug 2017. 

Right Panel: HB17 ensemble track distribution of Harvey cycle 00 UTC 25 Aug 2017. 

 

 



3. Discussions 

3.1 Pattern Analysis 

The precipitation pattern analysis helps understand model performance on accumulated rainfall 

distribution. Figure 2 shows Hurricane Harvey’s precipitation swath of available lead time. In the 00 

UTC 24 Aug 2017 cycle, ST4 data was only available from forecast hour 15. Thus, the rainfall is 

accumulated from forecast hour 15 to 126 for this cycle. For the other two cycles, it is accumulated 

from forecast hour 0 to 126. In Figure 2, all results show concentrated rainfall along its track in 

general. Observational data indicates that the heaviest rainfall occurred over Houston due to 

Hurricane Harvey’s strong outer rainband. Moreover, IMERG shows heavy rainfall barely occurs over 

the ocean in this case. However, it is important to recall that observational precipitation values over 

ocean are estimated only from passive microwave without any ground-based observation adjustments 

(i.e. rain gauge data cannot correct rainfall over ocean). Nevertheless, satellite microwave data is the 

best resource as of now to estimate precipitation upon oceans. Stage IV, a ground-based rainfall 

dataset, provides more pattern details due to higher resolution than IMERG. Stage IV and IMERG 

here show similar rainfall patterns over land, yet Stage IV got stronger peak rainfall over Houston. The 

climatology model, RCLIPER, only shows a main rainfall pattern along the track without predicting the 

heavy rainfall pattern over Houston. Compared to RCLIPER, HB17’s pattern is more similar to the 

observations. In the first two selected cycles, HB17 predicted heavy rainfall occurring not only over 

Houston, but also over Austin and San Antonio. This second-peak-rainfall false alarm was not present 

in the 00 UTC 25 Aug 2017 cycle. However, the peak value of Houston heavy rainfall slightly dropped, 

and the center moved towards the west as the second landfall occurred at Louisiana in this cycle. 

HB17 also slightly overestimated certain amount of rainfall along its path over the ocean compared to 

IMERG. Nonetheless, HB17 predicts a peak rainfall over Houston and more realistic rainfall patterns 

than RCLIPER. The general patterns from HB17 actually match well to the observational data.  

 

 
Fig 2. Rain swath of HB17, RCLIPER, IMERG, and Stage IV. First row is at 00 UTC 24 Aug 

2017, second row is at 18 UTC 24 Aug 2017, and third row is at 00 UTC 25 Aug 2017. Black 

lines are the forecasted/best tracks of models/observations. 

 

 

 



3.2 Azimuthal Analyses 

Azimuthal analyses examine precipitation structure from center to outer rainband in order to further 

assess the performance on peak, overall, and distribution of rainfall. Figure 3 shows radial distribution 

of averaged rain rate. RCLIPER (green) got slightly steeper slope than the other datasets.  It had the 

highest averaged rain rate at 100 km and the lowest at 300 km. HB17’s prediction (red) was very 

close to observational values (blue and purple), especially in the outer rainband from 100 km to 300 

km. Due to its high resolution (2 km), HB17 captured eye structure well, although the peak value was 

greater than observations. As both resolution and overestimation can contribute to this high peak 

value, it is necessary to consider the impact of resolution difference between datasets.. Rain flux is a 

function of rain rate and resolution which indicates total amount of rain within each 10 km radius 

intervals from 0 km to 300 km. Figure 4 shows rain flux radial distribution. HB17 is consistent with 

observational data from 100 to 300 km but overestimate rain amount in the core region. RCLIPER 

rain volume decreased from 150 to 300 km which differed from all other datasets. In radial distribution 

analysis, HB17 has a proven skill on producing reasonable values in the outer rainband, but slightly 

overestimates the core region.  

 

 
Fig. 3. Radial distribution of averaged rain rate for selected cycles of Hurricane Harvey.  

HB17’s  distribution is the red line, RCLIPER is green, IMERG is purple, and Stage IV is blue. 

The radial distance is from 0 to 300 km.  

 

 
Fig. 4. Similar to Fig. 3, but for rain flux. 

 

Probability distribution functions (PDFs) and cumulative distribution functions (CDFs) of decibel rain 

rate (dBR) in Figure 5 analyze how the model produces light/heavy precipitation compared to 

observations.  

 

dBR=10 log10(precipitation_rate) 

 

PDF and CDF were calculated in 2dBR threshold from 0 dBR (1 mm/h) to 27 dBR (approximately 500 

mm/h). In the figure below, it only shows up to 200 mm/h as no prediction exceeds this. The results 

show HB17’s 50th percentile of CDF (yellow dot)  is 2.9 mm/h, RCLIPER is 1.5 mm/h, IMERG is 2.7 

mm/h, and Stage IV is 2.5 mm/h. Accordingly, HB17 predicts a reasonable proportion of both lighter 

and heavier rainfall, but RCLIPER produces a significant amount of lighter rainfall, resulting in a low 

value of 50th percentile. On the other hand, HB17’s 75th percentile (green dot) is 6.8 mm/h while 

IMERG is 4.4 mm/h and Stage IV is 5.2 mm/h. This indicates that HB17 generates a greater amount 

of extreme rainfall than observational data indicates. PDF reveal similar information. HB17’s PDF 



shows this model produces about 2% of rainfall above 50 mm/h, IMERG has roughly 0%, and Stage 

IV has less than 1%. PDF and CDF suggests that HB17 generally produces representative dBR/rain 

rate with slightly higher frequency on extreme rainfall (> 50 mm/h). Besides, it is also worth noting that 

IMERG’s PDF demonstrates higher frequency in 2 - 6 mm/h comparing to Stage IV.   

 

Contoured frequency by radial distance (CFRD) plots are shown in Figure 6. These depict the PDFs 

of each 10 km interval from 0 to 300 km. CFRD shows how PDF varies from center to outer rainband 

and helps locate where the overestimation of extreme rainfall (>50 mm/h) happened. RCLIPER’s 

CFRD shows rain rate gradually decreased from the center to outer region. At the center, the rain rate 

mostly varies from 3 mm/h to 10 mm/h. All rain rates are below 5 mm/h from 150 km to 300 km. 

Compared to observational datasets, RCLIPER doesn’t produce realistic radial rain rate frequency. 

Shown in the top-right panel of Figure 6, IMERG’s estimation from microwave trends on high 

frequency of 2-8 mm/h. Rain rate generally drops down from core to 150 km and then Harvey’s heavy 

rainfall located at outer rainband rises the rain rate back up around 250 km. Stage IV also shows rain 

rate risen at 200 km due to the outer rainband precipitation. HB17 matches Stage IV observations for 

the most part, except within 50 km, where its rain rate is greater. In the core, HB17 has about 8% 

frequency above 50 mm/h while Stage IV only captures around 4%. Therefore, HB17’s slight 

overestimation of extreme rain rate happened in the core region where rainfall is mostly driven by 

convection. 

 

 
Fig. 5. PDF and CDF of dBR. Blue line is PDF and dashed red line is CDF. 50th percentile of 

CDF is indicated via yellow points and 75th percentile via green points. From left to right 

panel, the results are from HB17, RCLIPER, IMERG, and Stage IV sequentially. 

 

3.3 Precipitation Probabilities 

In order to minimize uncertainty of current deterministic forecasting, this study also demonstrates an 

experiment of probabilistic precipitation forecasting using an HWRF ensemble. Figure 7 shows 

probabilistic precipitation of 1, 4, 8, 16 inches at 00 UTC Aug 25 2017 generated by a 21-member 

ensemble run. The upper-left panel of Figure 7 shows 1-inch-rain probability; it corresponds to the 

outline of rain patterns in Figure 1. In general, the 90% of 1-inch probability caught the rain pattern 

outline really well but missed part of Louisiana and southern Mississippi. The figures of 4 and 8 inch 

probability predicted less rainfall over the ocean, which is more realistic compared to the deterministic 

forecasts and observational data in Figure 1. Especially in the 8 inch probability panel, the predictions 

shows rainfall above 8 inch most likely happens in land and a spot at 20N and 95W. The 

observational datasets in Figure 1 show that heavy rainfall over the ocean occurred around 22N and 

94W. Moreover, peak rainfall of 16 inches in the probabilistic forecast occurs around Houston. This 

matches observations better than deterministic run, which got a peak rainfall closer to Louisiana. 

Therefore, this experiment shows that probabilistic rainfall prediction, considering several track 

possibilities, can deliver more rational results to professionals and to the general public.  



 

 

 

  
Fig. 6. Contoured frequency by radial distance (CFRD). Distance interval is 10 km starting 

from 0 km to 300 km and rain rate interval is 2 dBR. Upper-left panel is HB17; Upper-right is 

IMERG; Lower-left is RCLIPER; Lower-right is Stage IV. 

 

 

Fig. 7. 126-hour probabilistic rainfall for Harvey cycle 00 UTC 25 Aug 2017. Thresholds are 1, 

4, 8, and 16 inches for panels from left to right and top to bottom. 

4. Conclusions 

This case study of Hurricane Harvey for HB17 shows that HB17 produces realistic precipitation, in 

terms of patterns, amount of rainfall, and rain rate radial and frequency distribution. Overall, it 

captured outer rainband heavy precipitation successfully. However, the core convection is slightly 

stronger than reality, inducing higher precipitation rate around the eye. Moreover, using the more 

computationally expensive probabilistic forecasting methodology, more realistic rainfall results were 

obtained.  

 



References 

Alaka, G. J., X. Zhang, S. G. Gopalakrishnan, S. B. Goldenberg, and F. D. Marks, 2017: Performance   

 of Basin-Scale HWRF Tropical Cyclone Track Forecasts. Wea. Forecasting, 32, 1253-1271,  

 https://doi.org/10.1175/WAF-D-16-0150.1. 

Biswas, M. K., and coauthors, 2017: Hurricane Weather Research and Forecasting (HWRF) Model:  

 2017 Scientific Documentation. 105 pp,   

 https://dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.9a_ScientificDoc.pdf. 

Blake, E. S., and D. A. Zelinsky, 2018: National Hurricane Center Tropical Cyclone Report: Hurricane  

 Harvey (AL092017). 77pp, https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf. 

Ebert, E. E., U. Damrath, W. Wergen, and M. E. Baldwin, 2003: The WGNE assessment of short-term  

 quantitative precipitation forecasts. Bull. Amer. Meteor. Soc., 84, 481-492,  

 https://doi.org/10.1175/BAMS-84-4-481. 

Lonfat, M., F. D. Marks Jr., and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using  

 the Tropical Rainfall Measuring Mission TRMM Microwave Imager: A global perspective. Mon.  

 Wea. Rev., 132, 1645–1660.  

 https://doi.org/10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2. 

Marchok, T., R. Rogers, and R. Tuleya, 2007: Validation schemes for tropical cyclone quantitative  

 precipitation forecasts: Evaluation of operational models for U.S. landfalling cases. Wea.  

 Forecasting, 22, 726–746, https://doi.org/10.1175/WAF1024.1. 

Rappaport, E. N., 2014: Fatalities in the United States from Atlantic tropical cyclones: New data and  

 interpretation. Bull. Amer. Meteor. Soc., 95, 341–346,  

 https://doi.org/10.1175/BAMS-D-12-00074.1. 

Stanski, H. R., L. J. Wilson, and W. R. Burrows, 1989: Survey of common verification methods in  

 meteorology. World Weather Watch Tech. Rep. 8, WMO/TD No. 358, WMO, 114 pp. 

Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. An Introduction. Academic  

 Press, 467 pp. 

Zhang, X., S. G. Gopalakrishnan, S. Trahan, T. S. Quirino, Q. Liu, Z. Zhang, G. Alaka, and V.  

 Tallapragada, 2016: Representing Multiple Scales in the Hurricane Weather Research and  

 Forecasting Modeling System: Design of Multiple Sets of Movable Multilevel Nesting and the  

 Basin-Scale HWRF Forecast Application. Wea. Forecasting ,31, 2019-2034,  

 https://doi.org/10.1175/WAF-D-16-0087.1. 

https://doi.org/10.1175/WAF-D-16-0150.1
https://dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.9a_ScientificDoc.pdf
https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf
https://doi.org/10.1175/BAMS-84-4-481
https://doi.org/10.1175/1520-0493(2004)132%3c1645:PDITCU%3e2.0.CO;2
https://doi.org/10.1175/WAF1024.1
https://doi.org/10.1175/BAMS-D-12-00074.1
https://doi.org/10.1175/WAF-D-16-0087.1

