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1. INTRODUCTION 

 
Tropical cyclone (TC) intensification involves 

the interaction of processes on a wide spectrum of 
spatial and temporal scales, and has proven challenging 
to predict. TC intensity forecast errors can be especially 
large for rapid intensification (RI) events (Sampson et al. 
2011; Emanuel and Zhang 2016). Compounding these 
issues, TCs that rapidly intensify prior to landfall are 
especially dangerous. Accordingly, the National 
Hurricane Center (NHC) has recently made the 
prediction of RI episodes its top forecast priority 
(Rappaport et al. 2012). 

Environmental forcings, such as those from 
upper-tropospheric troughs, can play important roles in 
TC intensity change, including RI. Upper-tropospheric 
troughs may provide a source of eddy flux convergence 
of angular momentum (Molinari and Vollaro 1989; 
DeMaria et al. 1993; Peirano et al. 2016), as well as 
quasigeostrophic (QG) forcing for ascent (Bracken and 
Bosart 2000; Fischer et al. 2017), both of which can act 
to intensify the TC. Conversely, upper-tropospheric 
troughs can also be associated with unfavorable 
environmental conditions, such as increased vertical 
wind shear and dry air (DeMaria et al. 1993; Peirano et 
al. 2016). 

Although a recent TC–trough climatology 
demonstrated that environments with a nearby upper-
tropospheric trough tend to be less favorable for TC 
intensification (Peirano et al. 2016), some TC–trough 
interaction events still undergo RI. The goal of this work 
is to determine if certain TC–trough interaction 
configurations are more favorable for RI. Additionally, 
this analysis will explore whether RI episodes are 
associated with unique environmental characteristics 
compared to non-RI episodes of similar TC–trough 
configurations.  
 
2. METHODOLOGY 
 
 Overwater TC intensity change episodes in the 
North Atlantic basin between 1989–2016 were compiled 
from the NHC “best track” hurricane database (Landsea 
and Franklin 2013). Environmental conditions were 
obtained from the ERA-Interim reanalysis (Dee et al. 
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 2011). TCs were classified as being in one of three 
environmental groups, based on the maximum potential 
vorticity (PV) anomaly within a 250–1000-km storm-
centered annulus, the distribution of which is shown in 
Fig. 1. The focus of this analysis is on those TCs in 
high-PV environments, characterized by maximum PV 
anomalies ≥ 2.0 PV units (PVU), and comprise the 
upper tercile of the distribution. These TCs were 
consistently found to be interacting with coherent upper-
tropospheric troughs in a case-by-case analysis. 

 
Figure 1. Distribution of the maximum PV anomaly (PVU) 
on the 350-K isentropic surface within a 250–1000-km 
annulus for TCs in the North Atlantic. The probability 
density (%; binned every 0.25 PVU) is given by the bars, 
while the cumulative distribution (%) is represented by the 
black line. TCs in low-PV, mid-PV, and high-PV 
environments are represented by blue, gray, and red bars, 
respectively. 
 
 To identify similar TC–trough configurations, 
PV anomalies on the 350-K isentropic surface were first 
interpolated onto a 1000×1000-km storm-centered grid 
with a spatial resolution of 50 km. Utilizing the PV 
anomalies at each grid point, a dimensionality reduction 
technique, t-Distributed Stochastic Neighbor Embedding 
(t-SNE; van der Maaten 2008), was implemented. t-SNE 
is a machine learning technique that can identify 
nonlinear relationships within a high-dimensional 
dataset; thus, it is well-suited for identifying similar 
upper-tropospheric configurations. The t-SNE algorithm 
allows each TC–trough interaction episode to be 
visualized as a point in a new two-dimensional space 
(Fig. 2a), with points located close together representing 
similar TC–trough configurations. Groups of similar TC–
trough configurations were objectively identified using a 
k-means clustering algorithm on the t-SNE results. 
Since k-means clustering requires the number of 
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clusters to be specified beforehand, the number of 
clusters (three) that maximized the silhouette score, a 
measure of cluster cohesiveness, was selected for this 
analysis (Fig. 2b). 
 

 
Figure 2. (a) Scatter plots of the two-dimensional 
representation of 350-K PV anomalies using t-Distributed 
Stochastic Neighbor Embedding. (b) As in (a), but results 
are grouped by a k-means clustering algorithm. Blue, 
orange, and green dots, represent TC–trough interactions 
in Clusters 1, 2, and 3, respectively. 
 
3. RESULTS 
 
 Storm-centered composites of PV anomalies 
on the 350-K isentropic surface using the three clusters 
resulting from t-SNE are shown in Fig. 3. Each cluster is 
characterized by a unique TC–trough configuration. 
Cluster 1 TCs feature the largest upper-tropospheric PV 
anomaly, located nearest to, and to the south of, the TC 
(Fig. 3a). In Clusters 2 and 3, the upper-tropospheric 
trough is located to the northwest, and northeast, of the 
TC, respectively (Figs. 3b,c). 
  

 
Figure 3. Composite-mean, storm-centered, PV anomalies 
(PVU; shaded, with black contours drawn every 0.5 PVU) 
on the 350-K isentropic surface for high-PV TCs in the 
North Atlantic basin. TCs are grouped by the results shown 
in Fig. 2 using k-means clustering in conjunction with t-
Distributed Stochastic Neighbor Embedding. The zonal and 
meridional distance (103 km) from the composite TC center 
are displayed along the axes. 
 

Within each cluster, TCs were placed into one 
of two intensity change groups, based on the 24-h 
change in maximum sustained 10-m wind (ΔVmax). TCs 
with a ΔVmax ≥ 25 kt were classified as RI episodes, 
consistent with the 95th percentile of ΔVmax for high-PV 
TCs. Otherwise TCs were classified as non-RI episodes. 
Cluster 1 TCs are associated with statistically 

significantly greater rates of intensity change than TCs 
in Clusters 2 and 3, and the highest fraction of storms 
that undergo RI (Fig. 4).  

 

 
Figure 4. Probability density (%) of 24-h TC intensity 
change (kt) for high-PV TCs in the North Atlantic basin from 
1989–2016. The intensity change distributions are grouped 
by the TC–trough configuration cluster, where TCs in 
Clusters 1, 2, and 3 are represented by blue, orange, and 
green lines, respectively.  
 

The differences between RI and non-RI 
episodes among multiple environmental parameters 
were analyzed. For example, the distributions of the 
coupling index (CI), defined as 
 

𝐶𝐼 = 𝜃!,!"" − 𝜃!,!"#                           (1) 
 

where 𝜃!,!""  and 𝜃!,!"#  are the 200–800-km storm-
centered, area-averaged, equivalent potential 
temperatures at 200 and 850 hPa, respectively, are 
shown in Fig. 5a. In each cluster, RI episodes are 
associated with statistically significantly lower CI values 
than non-RI episodes, indicative of less vertical stability. 
Interestingly, prominent differences between clusters 
exist. Cluster 1 TCs are associated with the greatest 
vertical stability, despite being associated with the 
greatest intensification rates. In fact, the CI distribution 
for Cluster 1 RI episodes is more similar to non-RI 
episodes in Clusters 2 and 3. These results suggest the 
anomalous vertical stability, relative to the type of TC–
trough configuration, may be more important for RI than 
simply the observed vertical stability. Conversely, the 
magnitudes of 1000–250-hPa vertical wind shear for RI 
episodes were consistently weaker than those observed 
in non-RI episodes (Fig. 5b). It is hypothesized that 
vertical wind shear consistently plays a limiting role in 
the rate of TC intensification, regardless of the type of 
TC–trough configuration. 
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Figure 5. Box and whisker plots of (a) CI (K) and (b) 1000–
250-hPa vertical wind shear (m s-1) for RI and non-RI 
episodes within Cluster 1 (blue), Cluster 2 (orange), and 
Cluster 3 (green), at the onset of the intensity change 
episode. The boxes range from the 25th–75th percentiles of 
the distribution, with a yellow line depicting the median, 
while the whiskers span the 10th–90th percentiles. Boxes 
with black hatching indicate the given intensity change 
group is associated with a statistically significantly different 
distribution from RI episodes within the corresponding 
cluster at the 95% confidence level. 
  
4. CONCLUSIONS 
 
 We have objectively identified three unique 
TC–trough configurations using a machine learning 
technique to analyze upper-tropospheric PV anomalies 
(Figs. 2 and 3). It was determined certain TC–trough 
configurations (Cluster 1) are associated with 
statistically significantly greater intensification rates, 
including RI (Fig. 4). RI TCs are consistently associated 
with more favorable environmental conditions than non-
RI episodes of similar TC–trough configurations, 
however, the conditions considered to be favorable for 
RI can vary between clusters.  
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