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1. INTRODUCTION 

 
Forecasting rapid intensification (RI) within 

Atlantic tropical cyclones (TCs) remains a 
significant challenge in operational meteorology. 
Kaplan et al. (2010) provided the Statistical 
Hurricane Intensity Prediction Scheme- Rapid 
Intensification Index (SHIPS-RII) as the first true 
RI classification model using linear discriminant 
analysis (Wilks 2011).  They found Brier skill 
scores (BSS) of 0.1 to 0.13 (dependent on RI 
threshold).  Rozoff and Kossin (2011) expanded 
the SHIPS-RII framework with Bayesian and 
logistic regression models, boosting BSS up to 
0.22 for logistic regression and 0.15 for Bayesian 
modeling. Kaplan et al. (2015) detailed the 
implementation of the Rozoff and Kossin (2011) 
methodology, noting that consensus models with 
all three techniques provide BSS values at or 
below 0.2 consistently. Overall, the blended 
performance was significantly hampered by large 
false alarm ratios exceeding 0.6, likely owing to 
the application of linear techniques to an 
inherently nonlinear forecast problem.  
Additionally, SHIPS-RII is trained on average 
characteristics of predictors within a specific radius 
of the cyclone center, rather than incorporating 
spatial information around the TC.    

Recent efforts have addressed these 
challenges by employing artificial intelligence (AI) 
based prediction models. Grimes and Mercer 
(2015) utilized spatial fields of base-state and 
derived meteorological variables from Modern Era 
Retrospective Analysis for Research and 
Applications (MERRA – Rienecker et al. 2011) to 
isolate distinct RI classification predictors through 
non-parametric hypothesis testing approaches.  
Resulting predictors, employed in a support vector 
machine (SVM) designed to predict the first 
instance of RI, yielded skill scores consistent with 
Kaplan et al. (2015). Grimes and Mercer (2016) 
expanded this work, applying rotated principal 
component analysis (RPCA – Richman 1986, 
Wilks 2011) over time (T-mode) and space (S-
mode) to gridded fields from the Global Forecast 
System Reforecast datasets (GFSR – Hamill et al. 

2013) to isolate fields that are most distinct 
between RI and non-RI events.  Subsequent work 
utilized a SVM ensemble with reanalysis datasets 
to forecast the first instance of RI within Atlantic 
TCs (Mercer and Grimes 2015). They showed the 
20th Century Reanalysis (Compo et al. 2011) 
provided the best forecast skill with BSS near 0.3, 
a 35% improvement over current operational 
values noted in Kaplan et al. (2015).  

These studies suggested potential for major 
improvements in TC RI forecasts through the 
inclusion of machine learning in the forecasting 
process but were limited by a lack of direct 
forecast application. Additionally, other machine 
learning methods (such as random forests – RFs 
and artificial neural networks – ANNs) have not 
been tested for RI prediction. This study emulates 
operational forecast data with GFSR fields and 
assesses operational performance of machine 
learning methods through a developed ensemble 
of SVMs, RFs, and ANNs. 

 
2. METHODOLOGY 
 

Data from 1985–2009 were collected from the 
National Hurricane Center and SHIPS for every 
TC in the Atlantic of at least tropical or subtropical 
depression strength. TC times classified as 
extratropical were removed from the dataset. All 
GFSR gridpoints within 19° of the TC center were 
included as well. 

Development of the AI ensemble requires 
three steps: feature selection, AI ensemble 
optimization, and the blending of AI ensemble 
members into a single probabilistic forecast.  
 
2.1 Feature Selection 

 
For the AI to distinguish between RI/non-RI 

events, it requires examples of input data that are 
distinct from one another. In this study, these 
features are selected via permutation testing 
following a two-step procedure.  First, a 
permutation test is completed on the mean RI and 
non-RI GFSR layer by taking the gridpoints of 
each mean field as the basis for the test. Layers 
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1One false alarm from the 41 ensemble members  
results in a BSS of 0.89. 
 

resulting in p-values less than 0.01 are retained for 
a second permutation test, in which all RI/non-RI 
events are tested on a gridpoint basis. This 
method yields points significantly different 
between RI/non-RI events at p ≤ 0.01, which are 
the most distinct spatial features in the database 
and thus useful in forecasting events undergoing 
RI. 

 
2.2 AI Ensemble 

 
In addition to feature selection, an optimal AI 

ensemble is necessary to best classify RI/non-RI 
events.  By tuning numerous parameters of each 
of the three methods considered (SVMs, RFs, and 
ANNs), the optimal routine can be identified.  
Tunable parameters include node and layer 
selection (for ANNs), tree and branch selection 
(for RFs), and kernel and cost selection (for 
SVMs).  Each configuration is tested by 
conducting 500 bootstrap-resampled cross-
validation trials, where 85% of the events were 
withheld for training and 15% withheld for 
independent testing. Each AI configuration is 
assessed using Heidke Skill Score (HSS) values, 
retaining configurations which perform best in at 
least 10 of 500 trials (41 members).  

Once the 41-member ensemble is established, 
a net probability of RI can be computed.  To 
weight the relative contribution of each individual 
member to the total probabilistic forecast, cross-
validation (1000 bootstraps) performance (based 
on Heidke skill score) is used.  Resulting HSS 
values for the AI ensemble are on the order of 0.3.  
Average BSS is 0.12, but some bootstrap 
members yield performance as high as 0.38, 
which far exceeds performance in Kaplan et al. 
(2015).   

 
3. 2017 ATLANTIC HURRICANE SEASON 

 
 The AI ensemble was run for each GFSR 

forecast for the 2017 Atlantic hurricane season to 
evaluate how well the AI ensemble would translate 
into a quasi-operational environment. BSS values 
were calculated globally for each TC event and for 
each timestep of a given event. Overall, global AI 
ensemble performance showed positive BSS 
values for 10 of the 17 (59%) named storms for 
the 2017 season, with perfect performance for 3 of 
those storms (Fig. 1).  However, the AI ensemble 
performed the worst on Tropical Storm Don, where 
one false alarm for an individual timestep greatly 
influenced the ensemble performance for this 
event. The AI ensemble had BSS near 0.5 for 4 of 

the 17 (24%) named storms including Tropical 
Storm Emily, Hurricane Gert, Hurricane Maria, and 
Hurricane Ophelia.   

Upon evaluation of each forecast timestep, 
BSS results were influenced by at least one 
outlying poor forecast in terms of either a miss or a 
false alarm for the majority of the 2017 events.  
Despite this, overall AI ensemble BSS 
performance was skilled, with percentage of BSS 
values greater than 0.891 at each timestep shown 
in Table 1.   
 

 
FIG.1. Global AI ensemble performance for the 
2017 Atlantic hurricane season.  BSS values 
reflect performance of the 41-member AI 
ensemble over the lifecycle of each event. 
 
4. CONCLUSIONS 

 
Results for the AI ensemble present a strong 

complement to the SHIPS-RII.  Comparisons for 
the 2017 Atlantic hurricane season revealed the AI 
ensemble outperformed SHIPS-RII on individual 
forecasts for 13 of the 17 named storms (76%). 
Future work will extend the current dataset 
through 2016 to update the baseline forecast 
model.  Additionally, a test statistic will be included 
to evaluate real-time performance of individual AI 
ensemble members, allowing for further 
optimization of the AI ensemble. 

 



 

TABLE 1. Performance evaluation of the AI 
ensemble for each timestep for each event.  
Percentage of BSS greater than 0.89, percent 
correct, false alarm rate, and probability of 
detection for each event provided. 
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TC 
Event 

Percent of 
BSS values 

> 0.89 PC FAR POD 

Arlene 100 1 0 -- 

Bret 100 1 0 -- 

Cindy 100 1 0 -- 

Don 67 0.83 0.17 -- 

Emily 67 1 0 -- 

Franklin 63 0.81 0.07 0 

Gert 87 1 0 -- 

Harvey 78 0.89 0.03 0.4 

Irma 72 0.78 0.07 0 

Jose 88 0.92 0.02 0.2 

Katia 38 0.63 0.17 0 

Lee 75 0.86 0.05 0 

Maria 82 0.92 0.05 0.71 

Nate 27 0.47 0.42 0 

Ophelia 96 1 0 -- 

Philippe 75 1 0 -- 

Rina 100 1 0 -- 


