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1. INTRODUCTION

Figure 1 shows the tangential, radial, and vertical com-

ponents of the velocity sampled by the NOAA WP-3D

Orion near an altitude of 450 m for Hurricanes Allen on

6 August 1980 and Hugo 15 September 1989. While the

storms have a similar maximum tangential wind, several

striking differences stand out: radius of maximum wind,

abruptness and magnitude of the change in the radial and

tangential velocities in the core, and the broadness of the

wind field. Because of each storm’s intensity and unique

characteristics, the observations have been the center

of several studies and have furthered our understanding

of inner core processes (Jorgensen 1984; Marks et al.

2008). In examining these storms, the authors focused

on small-scale features and asymmetric processes such

as barotropic instability (Schubert et al. 1999). In addition

to prior explanations, it is reasonable to ask if there is an

axisymmetric, boundary layer argument also at work.

Seeking an answer to inner-core vortex structure ques-

tions, Haurwitz (1935, 1936) extended Ekman theory to

include curvature effects with the goal of providing an ex-

planation for why tropical cyclones have an eye. More re-

cently, modeling work has grappled with the roles of the

linear and nonlinear terms (Kepert 2001; Smith and Vogl

2008; Bryan and Rotunno 2009). To understand the dy-

namics that arise from the nonlinear terms and how these

terms address structure questions, Williams et al. (2013),

Slocum et al. (2014), Schubert et al. (2017), and Slocum

(2018) examined the effects of the embedded Burgers’

equation — the simplest equation to combine both the

effects of nonlinear propagation and diffusion (Bateman

1915; Burgers 1948; Whitham 1974; LeVeque 1992). The

combined effects influence how information flows within

the system in such a way that an initially smooth wind

field can evolve into sharp gradients (i.e., shocks). The

formation of shocks from the tropical cyclone boundary

layer equations offers an axisymmetric explanation for

the abrupt 60 m s−1 change in tangential velocity and

35 m s−1 change in radial inflow observed in Hugo (see

Williams et al. 2013).

While the existence and formation of shock-like fea-

tures seem consistent with the Hurricane Hugo (1989)

observations, how do the nonlinear terms influence the

boundary layer flow for other systems such as Hurricane

Allen? To address this question, a slab boundary layer

model is used for various gradient wind profiles that rep-

resent weak to strong vortices that range from broad to

narrow in terms of wind field extent.
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2. SLAB AND LOCAL BOUNDARY LAYER MODELS

This work considers an axisymmetric, depth-averaged,

f -plane boundary layer model. The flow in this model

is driven by the radial pressure gradient force from the

overlying fluid — expressed by the gradient balanced tan-

gential wind υgr(r). The governing system of differential

equations takes the form

∂u

∂ t
+u

∂u

∂ r
+w−

(u

h

)

=
(

f +
υ +υgr

r

)

(υ −υgr)−c
D
(U)U

u

h
+K

∂

∂ r

(

∂ (ru)

r ∂ r

)

,

(1)

∂υ

∂ t
+u

(

f +
∂υ

∂ r
+

υ

r

)

+w−

(

υ −υgr

h

)

=

−c
D
(U)U

υ

h
+K

∂

∂ r

(

∂ (rυ)

r ∂ r

)

, (2)

w =−h
∂ (ru)

r ∂ r
and w− =

1

2
(|w|−w), (3)

where

U = 0.8(u2 +υ2)1/2 (4)

is the wind speed at 10 m height, f = 5× 10−5 s−1 is

the constant Coriolis parameter, K = 1000 m2 s−1 is the

constant horizontal diffusivity, h = 1000 m is the depth of

the slab, and c
D
(U) is the drag coefficient.

Two local models can be derived from the full slab.

The first local model (LM1) neglects the time derivative,

horizontal diffusion, radial advection term in the radial

equation, and vertical advection terms in addition to mak-

ing selective use of the gradient balance approximation.

The second local model (LM2) neglects the surface drag

terms in the radial momentum equation so that υ = υgr(r)
— essentially the same boundary layer used by Ooyama

(1969a). The steps for deriving the solutions for LM1 and

LM2 are detailed in Slocum (2018).

For the gradient balanced tangential wind profile in the

overlying fluid, this work uses the double Gaussian profile
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where Γ1 and Γ2 are the strength of the circulation, a1

and a2 are the radial extent of the vortex, h1 = 0.6 and

h2 = 1 are the hollowness parameters, and γ = 0.5 is the

weighting between the vortices.

Figure 2 shows the tangential (top row), radial (mid-

dle row), and vertical (bottom row) components of the

wind produced by the slab (orange curve), LM1 (dark blue

curve), and LM2 (light blue curve) for three vortices: a) a

weak vortex, b) a strong, narrow vortex, and c) a strong,
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FIG. 1. Flight-level winds from aircraft reconnaissance from the NOAA WP-3D Orion for Hurricanes a) Allen on 6 August

1980 and b) Hugo on 15 September 1989. The flight-level altitude for both storms is near 450 m. The top row shows

the tangential winds υ (blue curves) and radial winds u (red curves) and the bottom row is the vertical velocity w (gray

curve).

broad vortex. In the weak vortex case, the radial inflow

maximum is only slightly displaced radially inward from

the maximum in LM1 and LM2. In contrast, for the strong,

narrow vortex, the magnitude of the inflow between the

full slab and LM1 are the same, but LM2 produces dras-

tically stronger inflow. Also, the placement of the updraft

shifts from inside of the radius of maximum wind in the full

slab to outside for both local models — a result consistent

with Ooyama (1969b). In the output from the slab model

for the strong, broad vortex, there are two maxima in the

radial and vertical velocities — a feature not adequately

captured by the local models. The subpression of the in-

ner inflow maximum also stands out incomparison to the

narrow vortex case.

3. DISCUSSION

In this work, different gradient balanced tangential wind

profiles are explored to understand the effect of the non-

linear terms and shock formation. In the weak vortex

case, the inflow generated by the agradient forcing term

is insufficient to overcome the dissipative effects — con-

sistent with the line-symmetric metaphor modeling results

by Schubert et al. (2017) and Slocum (2018) — resulting

in a scenario where a shock does not form and the lo-

cal models capture most of the structure. In the stronger

cases, the underlying assumptions made in formulating

the local models break down, a shock develops, and the

updraft shifts into a region of high inertial stability in the

slab model. As the vortex wind field broadens — a sce-

nario that foreshadows eyewall replacement (Rozoff et al.

2012), a secondary inflow maximum develops in all mod-

els. However, the slab model creates a scenario where

the outer maximum is favored suggesting that shock dy-

namics play a critical role in eyewall replacement. The

results shown here indicate that there is a critical inter-

play between the overlying fluid and the nonlinear terms,

which is critical to not only understanding differences be-

tween broad and weak storms, but also to storm evolution

by placing the frictional updraft in the high inertial stability

region or cutting off inflow during eyewall replacement.
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FIG. 2. Solutions for a) a weak vortex (Γ1 = 5 106 m2 s−1, Γ2 = 0, a1 = 10 km, a2 = 0 km, vgr,max ≈ 20 m s−1, rgr,max ≈
15.8 km), b) a strong , narrow vortex (Γ1 = 14 106 m2 s−1, Γ2 = 0 106 m2 s−1, a1 = 10 km, a2 = 0 km, vgr,max ≈56 m s−1,

rgr,max ≈15.8 km), and c) a strong, broad vortex (Γ1 = 14 106 m2 s−1, Γ2 = 14 106 m2 s−1, a1 = 10 km, a2 = 45 km,

vgr,max ≈56 m s−1, rgr,max ≈15.8 km). The rows in each panel are the tangential velocity υ, the radial velocity u, and the

vertical velocity w for the slab boundary layer model (orange curve) and local models LM1 (dark blue curve) and LM2

(light blue curve).
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