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1 BACKGROUND 
Full details of our work will be published in our 
forthcoming paper, Plumlee et al. 2020; the full 
citation is in the References.   
 
There is substantial uncertainty in tropical cyclone 
surge forecasts, even at lead times of just 24 
hours, due to the uncertainty in tropical cyclone 
meteorological forecasts.  This has been a major 
obstacle to forecasting with high-fidelity 
hydrodynamic models due to the resulting 
computational cost of large ensembles.  Current 
surge forecasting from the National Weather 
Service uses P-Surge (Forbes & Rhome 2011, 
Taylor & Glahn 2008) for probabilistic forecasts 
and peak surge atlases for scenario-based 
guidance.  Both of these are built on the SLOSH 
model (Jelesnianski et al. 1992), a very fast and 
reliable, but also less accurate surge model (Kerr 
et al. 2013).  Demand for more advanced models 
has led to alternate forecast products (e.g. 
Blanton et al. 2012) that rely on running a small 
number of simulations of a very high fidelity 
model, whose results can be provided as-is or 
interpreted by experts to provide specific 
guidance.  These methods lead to fundamentally 
different guidance products and each has its 
limitations:  The higher, unknown levels of error 
from a coarser model necessitate greater caution 
in guidance products.  Conversely, hand-selected 
high-fidelity simulations do not come with a 
likelihood and require expert judgment to 
interpolate/extrapolate results to other scenarios.   

2 METHODS 
We have developed and applied an approach that 
attempts to deal with all of these concerns by 
combining a high-fidelity surge model with modern 
statistical tools.  At the core of our approach is the 
goal of constructing an emulator—a very 
computationally cheap surrogate for the 
hydrodynamic model that is trained on simulation 
data—tailored for a particular hurricane.  This 
allows arbitrary scenario-based surge estimates to 
be calculated in just a few seconds, while also 

supporting probabilistic forecasts.  For an 
impending hurricane, a handful of surge model 
simulations are run to train the surrogate.  These 
simulations use slightly different versions of the 
forecast hurricane, and are selected in a manner 
that minimizes error in the surrogate, given the 
forecast and its uncertainty.  This approach takes 
into account both the fact that the forecast 
changes every advisory and that simulations were 
carried out in previous forecast cycles.  Thus, our 
approach reuses previous simulations to maximize 
use of computational resources.  Brief 
explanations of each of these elements are 
provided in the following subsections.   

2.1 Surrogate 
Peak storm surge response to a hurricane over a 
region is represented as a Gaussian Process 
emulator (Gu & Berger 2016).  Gaussian process-
based emulation of coastal water levels have been 
employed successfully in several studies (e.g. 
Zhang et al. 2019, Parker et al. 2019).  We use a 
six-dimensional characterization of the storms at 
landfall as inputs to the surrogate:  latitude (LAT), 
longitude (LONG), heading (H), forward speed 
(FS), maximum wind speed (MWS), and radius of 
34kt isotach (R34). This characterization is unique 
to this work, and was chosen to conform to NHC 
forecast data while providing a good summary of 
hurricane properties relevant to storm surge.   

2.2 Selecting Simulations 
The goal is to select the storms to-be-simulated 
which will produce the most accurate estimate of 
the probabilistic surge hazard, given the forecast 
distribution, the emulator error distribution, and 
what simulations have already been run.  We used 
a modified version of the integrated mean squared 
error (IMSE) criterion of Sacks et al. (1989) to 
define the minimization problem.  To select the 
actual storm parameter combinations to be run, 
we used a randomized search algorithm (e.g. 
Gramacy & Lee 2009).  Importantly, the effect on 
the error structure of new samples can be 
assessed a priori because the Gaussian process 
emulator’s error structure is defined intrinsically.  



The forecast parameters’ covariance structure and 
error distribution were determined based on 
recent NHC forecast data (Cangialosi 2018), but 
without any knowledge of the current hurricane’s 
future states (since this is unknowable).   

2.3 Forecast Revision 
Once a set of alternate landfall characteristics 
have been selected, the NHC forecast must be 
modified to create a full storm track for each 
revised storm.  To ensure the surge forecasts are 
most relevant to the particular structure of the 
storm at hand, we utilize information on the full 
storm by perturbing the forecasted storm’s track 
and characteristics (using the NHC forecast as our 
baseline) with a mixed physical-statistical model.  
The six parameters used in emulation are 
determined with a Gaussian process statistical 
model based on historical forecast data that takes 
as input the storm’s current state, the forecast, 
and the desired landfalling state.  We then use a 
generalization of the Holland (1980) relation (see 
Dietrich et al. 2018) to perturb additional 
parameters in the NHC forecast that are not in our 
surrogate, namely the individual isotachs.  As an 
illustration of this process, a sequence of randomly 
drawn versions of Hurricane Michael, the storm 
used in our case study, is shown in Figure 1; more 
details on this are in the next section.   

 
Figure 1: Randomly drawn tracks and intensities 
from forecast distributions at rounds 0, 2, and 4.   

3 CASE STUDY & RESULTS 
We carried out a pilot study of this method using 
2018’s Hurricane Michael.  Michael represents an 

interesting test case in that the storm underwent 
rapid intensification for nearly all of its short 3-day 
lifespan before making landfall in the Florida 
Panhandle, which was consistently under-
predicted by the NHC, leading to large, low-biased 
intensity errors (Beven et al. 2019).  Conversely, 
track errors were unusually small, with landfall 
well-predicted 30 hours before landfall.   
 
We began with a set of 30 simulations (termed 
“Round 0”) covering a very wide range of storm 
states across the region of interest, the Gulf of 
Mexico from Mississippi through the Florida 
Panhandle.  This provides a baseline dataset that 
could easily be produced across larger regions.  
We then performed forecasts of the surge at 
every-other NHC advisory, i.e. every 12 hours, 
over Michael’s brief lifespan.  This corresponds to 
five rounds, with forecasts at 60, 48, 36, 24, and 
12 hours prior to landfall; we chose 12-hour 
intervals to reduce the human effort for this pilot 
study.  We simulated 10, 20, or 30 hurricanes 
each 12-hour round.  The ADCIRC hydrodynamic 
model (Luettich et al. 1992, Westerink et al. 2008) 
was used with a high-resolution mesh (Figure 2) 
designed for operational forecasting covering the 
northeastern Gulf of Mexico (Bilskie et al. 2020).  
The mesh has just over 2 million nodes, and has 
resolution in the tens of meters in nearshore and 
overland areas.  Runs were done without tides nor 
wave coupling, discussed further later.   

 
Figure 2: ADCIRC mesh across the Florida 
Panhandle.  View is looking eastward from 
Panama City, black dots are mesh nodes.   

We began with thirty simulations in round 1, then 
twenty runs in rounds 2 and 3, and ten in rounds 
4 and 5.  The evolution of sampled hurricane 
parameters is shown in Figure 3.  The sampled  
(i.e. “design”) storms can be seen to move with 
the shifting distribution, while filling in gaps left by 
prior rounds.  The median predicted surge is 



shown against the hindcast surge in Figure 4.  
Here the predictions grow toward the hindcast 

surge as the rounds progress, though this is 
driven by Michael’s increasing intensity forecasts.   

 
Figure 3: Parameter forecast distributions and samples; all data are for rounds 1-5 and darker colors 
imply later rounds.  Bottom-left panels show the 90% forecast PDF contours.  Diagonal panels show 
marginal forecast densities for each landfall characteristic.  Top-right panels show the selected design 
storms’ parameters; open circles are the round 0 parameters.   

 
Figure 4: Hindcast peak surge (bottom right panel) and predictive median peak surge (other three 
panels) using the predictive distribution in the Florida Panhandle.  Color is shown only for nodes 
shallower than 4 meters depth that wetted.  Black line is the coastline.   



To evaluate the forecast model’s performance, 
several error metrics were calculated, including 
root mean squared error (RMSE), mean absolute 
error (MAE), the Dawid-Sebastiani score, and the 
misclassification rate.  The Dawid-Sebastiani score  
evaluates the adequacy of both the forecast 
variance and the mean (see, e.g. Gneiting & 
Raftery 2007).  The misclassification rate indicates 
the percentage of nodes predicted as being wet 
when they were actually dry or vice-versa.  
Performance was only evaluated for overland 
points within the study area that were wetted by 
simulations in order to not over-estimate 
performance by including easy-to-predict points 
with little surge.  Results are shown in Figure 5, 
This figure also shows performance when the 
storm’s landfall state is known.  In other words, 
with forecast uncertainty removed.  This allows a 
rough comparison of uncertainty due to the 
surrogate vs. that due to forecast uncertainty, 
although the two are intrinsically linked by the 
procedure employed: the surrogate depends on 
the simulations performed, which are chosen 
based on the forecast uncertainty.  As can be 
seen, forecast uncertainty quickly dominates, 
suggesting that the surrogate model works 
reasonably well and is on par with errors in high 
quality surge model hindcasts of 20-30 cm.  The 
oscillations from round to round when landfall is 
known are surprising, and may be attributable to 
the fact that this has been done for a single storm, 
meaning sample size is one.   

 
Figure 5: Surge forecast performance with known 
and unknown landfalling storm states.   

Emboldened by the promising results thus far and 
wishing to ground-truth the work, we also carried 
out a comparison to real measured surge data and 
NWS’s P-Surge probabilistic model.  Results are 
shown in Figure 6.  Note that this means there is 
additional uncertainty due to errors in the surge 
models and errors in parameterized meteorological 
forcing.  Our system generally performs 
comparably to P-Surge.  Note that one should not 
necessarily expect the median to correspond to 
the actual surge due to the effects of uncertainty 
on the response, and so focus should be placed on 
quantile coverage.   

 
Figure 6: Predictive accuracy of P-Surge (left) and 
our proposed method (right) vs. observed surge 
data for rounds 1 (top) through 5 (bottom).  The 
dot represents the forecast median and the line to 
the right extends to the 90% quantile of the 
forecast distribution.  If no dot is present for P-
Surge, it means there was no prediction for that 
round.  If the 90% quantile was present for P-
Surge but the 50% was not, then the 50% value 
is set to 50 cm for plotting purposes.    

Some of the higher variance in the P-Surge 
predictions is likely attributable to the inclusion of 
tides, which were excluded for our simulations 
since tide range is small and Michael made landfall 
at mid-tide, meaning the effect of neglecting it 
should be small.  We performed an additional 
hindcast simulation (not shown) including both 
tides and wave coupling to evaluate the effect of 
excluding these.  Changes in peak surge were 



generally less than 10 to 30 cm, though the effect 
was larger, around 50 cm, in the area immediately 
around peak surge, which we attribute to wave 
setup.  This is notable since the highest 
observation in Figure 6 coincidentally corresponds 
to the location of highest modeled surge in the 
storm, at Mexico Beach, FL, where model under-
prediction is largest.  This points to the 
importance of more advanced modeling, though it 
is difficult to read too much into a single data 
point.   

4 CONCLUSION 
We have developed a method to optimize use of 
computational resources for calculating both 
probabilistic and deterministic surges from 
impending hurricanes that is capable of being fully 
automated and run with presently available 
resources.  The method leverages several 
statistical tools to optimally select which 
simulations to run through the costly 
hydrodynamic model in order to construct a cheap 
Gaussian process-based surrogate for the 
hydrodynamic model.  The method is designed to 
function optimally in forecasting where the target 
is always moving as the storm changes.  Since it 
does not require any fixed design, the method is 
robust against data losses, changes in available 
resources, and other operational challenges.  The 
statistical methods were developed with speed in 
mind, and all steps can be run in under 20 
minutes on a laptop.  Prediction of surge from a 
new storm with the surrogate model takes 
seconds.  In a pilot study with Hurricane Michael, 
the method was shown to be effective with, on 
average, 10 simulations per 6-hour forecast cycle.  
The method not only converges quickly, but also 
performed on par with NWS’s P-Surge, though we 
emphasize it is difficult to generalize performance 
based on only one storm.  Results are extremely 
promising, and far exceeded our expectations, 
especially given the unusual characteristics of 
Michael.  For instance, a hurricane with more than 
3 days of lead time would have permitted several 
earlier rounds of simulations, meaning errors at a 
given time-before-landfall should be improved.   
 
Considerable improvements can be made to our 
method.  Most notably, results suggest the 
hurricane forecast uncertainty is a driving 
component of total surge forecast uncertainty, and 
so better characterizing the hurricane forecast 
distribution is key to producing better surge 
estimates.  Our current forecast distribution is 

independent of the particular storm under 
consideration, even though uncertainty in 
forecasts clearly varies storm-to-storm and across 
different forecast cycles.  Many more advanced 
surrogate modeling strategies exist, and work on 
this will continue.  We also anticipate needing to 
move beyond a purely “at-landfall” 
characterization in order to handle storms whose 
exact time of landfall is ill-defined due to irregular 
coastal geometry; Hurricane Irma’s (2017) path 
toward the Florida peninsula illustrates the 
potential importance of this.   
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