Identification of snow and rain at the surface using polarimetric radar

Martin Hagen¹ and Alice Dalphinet¹,²

¹ Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen, Germany, ² Direction Interrégionale Nord, Météo-France, Villeneuve-d’Ascq, France

Motivation

- The transition from rain to snow at the surface is one of the challenging facts in aviation and road traffic during winter weather condition.
- Numerical weather forecast is able to provide reasonable good forecasts. Often timing and localization of precipitation is not correct.
- Nowcasting applications still suffer from the precise observation of the transition from rain to snow at the surface.

Polarimetric weather radar allow detailed classification of hydrometeors. However, radar measurements are normally several hundred meters above ground and can therefore not represent the situation at the surface.

Cold front Southern Germany 21 Nov. 2008

Freezing Level Estimation

- Modelized rain / dry snow limit (MRSL)
- Estimation of MRSL for volume scan sectors

Situation Classification

- Hydrometeor classification is used to identify convective and stratiform regions in the volume scan
- Fuzzy logic situation classification for each volume scan sector

Classification at Ground

- Without further observations an extrapolation of radar hydrometeor classification towards the ground is limited.
- Situation classification

Fuzzy Logic Classification

- Fuzzy logic hydrometeor classification schemes are now standard for the application of polarimetric weather radar. They can be adapted to different operational requests and radar systems.
- POLDRAD can use LDR and HV for the identification of melting hydrometeors
- The current classification is optimized for winter conditions.
- 1-D and 2-D membership functions are used.

Summary – Perspectives

- Hydrometeor classification by polarimetric radar
- Melting layer detection by ZHV, ZH, LDR, and PVA
- Snow fall estimation at ground is encouraging

Summary

- Globally robust method
- Rapid and easily adaptable
- Less sensitive to measurements errors
- Convict detection of the non-meteorological echoes
- Representation of the melting layer
- Detection of the snowfall

Characteristics

- Robustness of the detection of the snowfalls
- Detection of a front delineating an area of rain and of snow at the ground
- Limited precision in the hydrometeors classification
- Validity of the membership functions

Limits

- Add new input parameters like sounding or surface temperatures
- Determination of the contents of hydrometeors
- Comparison with the model data and others observations

Perspectives

- Nowcasting applications still suffer from the precise observation of the transition from rain to snow at the surface.