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An important piece of the puzzle for improving numerical weather prediction (NWP) 

microphysics is improving the representation of the particle size distributions (PSDs) of the 

hydrometeors used for the initial condition in a forecast, especially for short term convective 

scale forecasts. Weather radar provides the best temporal and spatial observations of 

hydrometeors for model initialization. Basically, two approaches currently exist for estimating 

PSDs from radar data: i) direct observation-based retrieval, and ii) NWP model-based retrieval 

(i.e., data assimilation (DA)). In direct retrieval, the PSD parameters are estimated from radar 

reflectivity and/or differential reflectivity. This method normally pre-assumes hydrometeor type 

and needs at least the same number of independent radar measurements as the number of 

PSD parameters sought. In reality, however, multiple species of hydrometeors exist in a 

convective system and there are more parameters desired than available independent 

measurements, specifically for multi-moment microphysics schemes in NWP models. In this 

case, model-based retrieval using the Ensemble Kalman Filter (EnKF) yields promising 

results. The EnKF uses ensemble covariances to update the microphysical state variables 

based on both observed reflectivity (Z) and radial velocity (Vr). These state variables can then 

be used to prognose the DSD parameters.  

For this study, the EnKF was applied to a mesoscale convective system (MCS) that passed 

over western Oklahoma early on May 9 2007. Both a single-moment (SM) Lin three-ice 

microphysics scheme and a Milbrandt and Yau double-moment (DM) scheme were used in 

multiple experiments. Previous research has shown that use of a DM scheme over a SM 

scheme results in a significant improvement in the representation of the microphysical state of 

supercells, specifically the size sorting of hydrometeors. The event was observed by KOUN, a 

dual-polarimetric WSR-88D radar. The polarimetric radar measurements provide additional 

information on the PSDs of the hydrometeors present than reflectivity (Z) alone, such as the 

size of rain drops and the presence of hail. A polarimetric radar simulator (Jung et al. 2008a, 

2010) that calculates several variables including differential reflectivity (Zdr), specific differential 

phase (Kdp), and cross-correlation coefficient (ρhv) using the model state variables was used in 

conjunction with the polarimetric observations to better assess the microphysical state.  

Introduction 

Methodology 
• CAPS Advanced Regional Predication System (ARPS) fully compressible, non-hydrostatic 

storm-scale model used.  

• Model domain: 259 x 259 x 43 with 2km horizontal resolution and stretched vertical 

resolution with average distance of 500m 

• Initial model variables, lateral boundary conditions, and surface conditions interpolated from 

12km NCEP 9 May 2007 0000 UTC NAM model analysis 

• One hour deterministic forecast from 0000 UTC to 0100 UTC to “spin-up” the system  

• 40 member ensemble generated from 1 hour forecast by adding random, smoothed, 

Gaussian perturbations to u,v,w, and q for all hydrometeors 

• Level II Z and Vr observations assimilated from 5 regional WSR-88D radars as well as the 4 

radars in the CASA network.  

• Analysis period consisted of 5 minute forecasts and assimilation cycles (Z and Vr) over a 1 

hour period between 0100 and 0200 UTC 

• 3 hour deterministic forecast made from the final ensemble mean analysis. 

• Microphysics schemes used include mixed SM microphysics between members that 

consisted of 16 Lin et al. (1983) (LIN) members, 16 Weather research and Forecast (WRF) 

model SM 6-class microphysics scheme (Hong and Lim 2006) (WSM6) members, and 8 

simplified NWP explicit microphysics (NEM) members (Schultz 1995) to increase ensemble 

spread (Snook et al. 2011) for SM assimilation, and Milbrandt and Yau (MY) (2005) DM 

microphysics scheme for DM assimilation 

• Lin scheme used for SM forecast and MY scheme for DM forecasts 

• Intercept parameter used for rain adjusted by a factor of 10 from 8 x 106 m-4 as is typically 

used in the LIN scheme to 8 x 105 m-4  

• The shape parameter was set to 0 in all cases 

 

 

Experiment 

Assimilation 

Scheme 

Forecast 

Scheme Multi Noise Relax Graupel Hail 

SS_M SM LIN,WSM6,NEM SM LIN 0.25 0 0 N Y 

SD_M SM LIN,WSM6,NEM DM MY 0.25 0 0 N Y 

DD_M DM MY DM MY 0.25 0 0 N Y 

DD_MA DM MY DM MY 0.25 u,v,θ+.5 0 N Y 

DD_R DM MY DM MY 0.00 0 0.5 N Y 

Results 

• Both SS_M and SD_M were poor in terms of structure and microphysical state and 

contained spurious convection. However, SD_M improved near the end of the forecast 

period as the system adjusted to the DM scheme.  

• Use of DM scheme during assimilation provided a better representation of the 

microphysical state of the system, specifically the size sorting of hydrometeors in the 

leading convective line and the size of raindrops in the stratiform regions.  

• The DD_M forecast showed significant improvement in the structure of the system, 

including the breadth and vertical composition of the leading stratiform region and extent of 

the trailing stratiform region and leading convective line. 

• The DD_M forecast also showed improvement in the size sorting of droplets in the leading 

convective line and the size of droplets in the stratiform regions, as in the final analysis.  

• More significant improvement in DD_M was hampered by excessive hail production. An 

experiment with graupel instead of hail resulted in excessive large rain and no structural 

improvement (not featured).  

• DD_MA analysis contained excessive hail and had a poorer Z fit to the observations in the 

stratiform region in the forecast. 

• DD_R had a poorer handle on the leading convective line and the extent of the stratiform 

region was greater than observed.  
 

Conclusions 

0 

1 

2 

3 

4 

5 

6 

3900 4200 4500 4800 5100 5400 5700 6000 6300 6600 6900 7200 

KTLX Vr RMSI and spread (ms-1) 

DD_M RMSI DD_MA RMSI DD_R RMSI 

DD_M spread DD_MA spread DD_R spread 

0 

2 

4 

6 

8 

10 

12 

3900 4200 4500 4800 5100 5400 5700 6000 6300 6600 6900 7200 

KVNX Z RMSI and spread (dBZ) 

DD_M RMSI DD_MA RMSI DD_R RMSI 

DD_M spread DD_MA spread DD_R spread 

0 

2 

4 

6 

8 

10 

12 

3900 4200 4500 4800 5100 5400 5700 6000 6300 6600 6900 7200 

KTLX Z RMSI and spread (dBZ) 

DD_M RMSI DD_MA RMSI DD_R RMSI 

DD_M spread DD_MA spread DD_R spread 

0 

1 

2 

3 

4 

5 

6 

3900 4200 4500 4800 5100 5400 5700 6000 6300 6600 6900 7200 

KVNX Vr RMSI and spread (ms-1) 

DD_M RMSI DD_MA RMSI DD_R RMSI 

DD_M spread DD_MA spread DD_R spread 

Fig. 1. Diagram of experiment timeline for all experiments listed. 

 

Fig. 2. Locations of radars used for assimilation as well as KOUN used for comparison relative to the MCS at time 

of final assimilation (0200 UTC) and location of main system features at 0400 UTC.  

 

Table. 1. Description of experiments performed including the microphysics scheme used during assimilation and 

forecast; whether multiplicative inflation, additive noise, or covariance relaxation was used and by what amount; 

and whether graupel or hail was included. The experiment naming format gives the scheme used for assimilation 

and forecast followed by the model error treatments used.  

 

Fig. 3. (a) Observed Z (dBZ) mosaic  as well as final ensemble mean analysis Z  (0200 UTC) from (b) SS_M, (c) 

DD_M, (d) DD_MA, (e) DD_R.  

 

Fig. 4. Observed  (a) Z (dBZ),  (b) ZDR (dB), (c) KDP (dB km-1), and (d) ρhv, from KOUN at .5˚ tilt as well as simulated 

variables for  (e-h) SS_M, (i-l) DD_M, (m-p) DD_MA, and (q-t) DD_R from their respective  final ensemble mean 

analyses at 0200 UTC. Note that the simulated variables are as if they were observed from KOUN. ZDR results 

show  the size of raindrops in the experiments with the DM scheme match the observations better.  

 

Fig. 5. Final ensemble mean analysis (0200 UTC) (a) rain and (b) hail mixing ratios (g kg-1) and (c) mass weighted 

median diameter (mm) for SS_M as well as (d-f) DD_M. While there is a slightly larger amount of hail in DD_M, the 

expected difference in drop sizes between convective and stratiform precipitation is much better represented 

compared to SS_M.  

 

Fig.  7. Root mean square innovation and ensemble spread during assimilation. Note that while additive noise and 

relaxation increased ensemble spread, neither provided improved RMSI.    

 

Fig. 9. Observed Z (dBZ) mosaics at (a) 0400 UTC and (b) 0500 UTC as well as (c) two hour (0400 UTC) and (d) 

three hour (0500 UTC) forecast Z for SS_M, (e-f) SD_M, (g-h) DD_M, (i-j) DD_MA, (k-l) DD_R. The stratiform 

regions and convective line fit the observations better in DD_M compared to DD_MA and DD_R. SD_M begins to 

converge towards DD_M between hours two and three.  

 

Fig. 11. Observed  (a) Z (dBZ), (b) ZDR (dB), (c) KDP (dB km-1), and (d) ρhv, from KOUN at .5˚ tilt as well as simulated 

variables for  (e-h) SS_M, (i-l) SD_M, m-p) DD_M, (q-t) DD_MA, and (u-x) DD_R from their respective two hour 

forecasts at 0400 UTC. Note that the simulated variables are as if they were observed from KOUN. Higher ZDR 

values on the eastern edge of the leading convective line indicative of size sorting and more realistic KDP values.  

 

Fig. 12. Two hour forecast (0400 UTC) (a) rain and (b) hail mixing ratios (g kg-1) as well as (c) mass weighted 

median diameter (mm) for SS_M as well as (d-f) DD_M. DD_M better represents expected differences in the 

amount of rain and median droplet diameter between the leading convective line and stratiform region.  

 

Fig. 6. (a) Observed potential temperature (K) (contoured) and surface wind field (ms-1) at 0200 UTC as well as final 

ensemble mean analysis (0200 UTC)  potential temperature (filled) for (b) SS_M and (c) DD_M. The cold pool in 

DD_M matches the observations better, is more uniform, and may have led to better preservation of the stratiform 

region early in the forecast.  

Fig. 8. (a) Observed Z (dBZ) mosaic at (0230 UTC) as well as 30 minute forecast Z (020 UTC) from (b) SS_M (c) 

SD_M, and (d) DD_M. Both results initialized from the SM final analysis broke down into multiple convective cells 

instead of maintaining a leading convective line and stratiform regions like DD_M. A more consistent, stronger cold 

pool in DD_M may be connected to the improved stratiform region (see Fig. 6).  

 

Fig. 10. Observed east – west vertical cross section of Z through the leading stratiform region from KTLX at (a) 

0300 UTC, (b) 0400 UTC, and (c) 0500 UTC as well as east-west cross sections of Z for (d) one hour (0300 UTC), 

(e) two hour (0400 UTC), and (f) three hour (0500 UTC) forecasts from SS_M, (g-i) SD_M, and (j-l) DD_M. While 

both SS_M and SD_M contain vertical, more convective development, the Z presentation is more consistent in 

east-west extent and stratiform in nature.  

a) 

b) 

c) 

d) 

e) 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

i) 

j) 

k) 

l) 

m) 

n) 

o) 

p) 

q) 

r) 

s) 

t) 

a) b) c) 

d) e) f) 

a) b) c) 

a) 

b) 

c) 

d) 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

i) 

j) 

k) 

l) 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

i) 

j) 

k) 

l) 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

i) 

j) 

k) 

l) 

m) 

n) 

o) 

p) 

q) 

r) 

s) 

t) 

u) 

v) 

w) 

x) 

a) b) c) 

e) f) g) 


