

Dual Polarization Radar Winter Storm Studies Supporting Development of NEXRAD-Based Aviation Hazard Products

Study the dual polarization radar signatures of all variety of winter storms to relate the winter microphysical states and observed precipitation structures to usable metrics for inferring the presence of a supercooled water icing hazard.

Valparaiso University Raquel Evaristo, Adam Stepanek, Teresa Bals-Elsholz, Jacob Cobb, and Jaclyn Ritzman

Objective

Polarimetric Radar Observations

Vertical incidence 'bird bath' **ZDR** calibration check results for the Valparaiso University dual pol weather radar

Valparaiso, IN – Nov. 5, 2010 – 0514 UTC – tilt 10 degrees

-10 0 10 20 30 40 50 6

-30 -15 0 15

This work was sponsored by the Federal Aviation Administration (FAA) under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Valparaiso, IN – Feb. 1, 2011 – 1912 UTC – tilt 4.3 degrees

Aggregates of Crystals

Ice- or water-saturated conditions

Not evident as a distinct feature

Strong updraft (if riming)

Largest reflectivity (20 to 30 dBZ)

Weakest +ZDR (0 to +2 dB)

Possible icing hazard

CATEGORY A Herzegh and Conway (19 Bader et al. (1987) Wolde and Vali (2000) Hogan et al. (2002) Andric et al. (2009) Moissiev et al. (2009) Kennedy and Rutledge (2 Hurricane Irene* **CATEGORY E**

Hogan et al. (1999) Wolde and Vali (2000) Jan. 8, 2010 – Indiana* Feb. 1, 2011 – Indiana*

Discussion

Plate Crystals

- Ice-supersaturated conditions (Category B)
- Location observed as patches and along edges
 - Weaker updraft
 - Small reflectivity (–10 to +10 dBZ)
 - Large +ZDR (+4 dB to +8 dB)
 - No icing hazard

Ice Supersaturation **Growing Hexagonal Plates**

Dendrite Crystals

- Water-saturated conditions (Category A)
- Defining signatures are +ZDR 'bright band' layers
 - Stronger updraft
 - Larger reflectivity (10 to 30 dBZ)
 - Weak +ZDR (+1 to +3 dB)
 - Icing hazard

Water Saturation Growing Dendrites with Light Riming

Water Saturation Aggregation with Light Riming

Storm List

	Z (dBZ)	+ZDR (dB) Anomaly
6)		1.5 to 3
	10 to 20	1 to 3
	?	2
	10 to 20	1 to 3
	10 to 24	1 to 3
	5 to 15	1 to 2.5
11)		
	13 to 23	2.2 to 3.4
	Z (dBZ)	+ZDR (dB) Anomaly
	-10 to +5	>4 dB
	-5 to -13	6 to 7
	4 to 8	7.5 to 7.9
_		_

* –Z and ZDR values reflect maximum range of sectors shown

Summary

- Distinct categorizations of dual pol radar signatures have been developed that can be related to microphysics (i.e., robust)
- Recent observations conform with those reported from past studies in the field and laboratory
- Insight gained; more evaluation across **NEXRAD** network planned
- Categorizations could be helpful, contributing information in an icing hazard algorithm
- Future work: need for simultaneous measurements of ice crystals and cloud water content at a sensitive level