In-flight Icing Detection Using S-band Polarimetric Weather Data

Ellis, S., Serke, D., Hubbert, J., Albo, D., Weekley, A. and Politovich, M.

Overview

- The purpose of this effort is to develop an 'Icing Hazard Level' (IHL) algorithm using moment fields from the soon-to-be polarized network of >150 WSR-88d S-band weather radars.
- Supercooled liquid aloft is a contributing factor to a significant number of aviation accidents, CONUS detection a priority.

Background

- IHL prototype based on applying fuzzy logic membership functions to our knowledge of microphysical effects on radar returns and existing component algorithms:
 - Freezing level detection (Brandes and Ikeda 2004)
 - Freezing drizzle detection ‘NDDA’ (Ikeda et al. 2009)
 - Particle Identification ‘PID’ (Vivekanandan et al. 1999)
 - Mixed-phase Identification (Plummer et al. 2010)
 - Current Icing Product (Bernstein et al. 2005)
- ‘Mixed-Phase’ sub-algorithm based on icing flight campaign data analysis work by Plummer et al (2010) where the authors found distinguishable differences in polarimetric moment signatures for ‘mixed-phase’ and ‘ice-only’ radar views.
- Specifically, ZDR and KDP had smaller mean values and smaller standard deviations in ‘mixed-phase’ than ‘ice-only’.

In-flight Icing Field Campaign

- Paper 16A.6 (thurs @ 5:15 pm) details the Winter 2010/2011 field campaign to collect data conducted at Platteville, Colorado.
- Colorado State’s CHILL and NCAR’s S-Pol S-band radars collected data over Platteville for these icing cases.
- Explore moment data, validate icing with NASA’s Icing Remote Sensing System (NIRSS) positioned at Platteville, icing Pilot Reports.

IHL Algorithm

- Soundings are hourly RUC profiles at closest gridpoint to Platteville, CO
- Freezing Level output shown below: (ring due to enhanced moment values)
- Frz. hgt. value adjusts hourly model sounding to a best 0° level
- PID classifies the radar echoes with fuzzy logic and polarimetric membership functions at each gate.
- PID helps mask ‘supercooled liquid’, ‘irregular crystal’ and ‘dry snow’ types
- Other particle types excluded.
- NDDA uses numerous spatial statistical measures of reflectivity, converts into ‘interest’ scores with fuzzy logic. (Reflectivity median, STDEV and textures values over 15 and 100 km ranges from each gate.)
- ‘Mixed-phase’ algorithm uses similar approach but with polarized moments

Mixed-phase_interest =

\[
\text{Mixed-phase Interest} = \frac{\text{MeanZDR}_{\text{int}} + \text{MeanKDP}_{\text{int}} + \text{stdevZDR}_{\text{int}} + \text{stdevKDP}_{\text{int}}}{4}
\]

- If ‘Mixed-phase Interest’ > 0.5 then supercooled liquid exists

Summary

- The prototype IHL product derives a high interest value over Platteville, CO for known times of in-flight icing from localized PIREPs and output from NASA’s Icing System during the 2010/2011 field campaign.
- Future work: 1) Validation with KCLE polarized radar 2012
 2) Tune algorithm against icing/non-icing cases
 3) Test against large drop/small drop cases

Case Study: 5/18/2011 at Platteville, CO

- The remainder of this poster will illustrate a case study example of the above IHL flow diagram for the ‘Mixed-Phase’ calculation only.