

Overview

* The purpose of this effort is to develop an 'lcing Hazard Level' (IHL) algorithm using moment fields from the soon-to-be polarized network of >150 WSR-88d S-band weather radars. * Supercooled liquid aloft is a contributing factor to a significant number of aviation accidents, CONUS detection a priority.

Background

* IHL prototype based on applying fuzzy logic membership functions to our knowledge of microphysical effects on radar returns and existing component algorithms:

- Freezing level detection
- Freezing drizzle detection 'NDDA'
- Particle Identification 'PID'
- Mixed-phase Identification
- Current Icing Product
- * 'Mixed-Phase' sub-algorithm based on icing flight campaign data analysis work by Plummer et al (2010) where the authors found distinguishable differences in polarimetric moment signatures for 'mixed-phase' and 'ice-only' radar views.
- * Specifically, ZDR and KDP had smaller mean values and smaller standard deviations in 'mixed-phase' than 'ice-only'.

In-flight Icing Field Campaign

- * Paper 16A.6 (thurs @ 5:15 pm) details the Winter 2010/2011 field campaign to collect data counducted at Platteville, Colorado.
- * Colorado State's CHILL and NCAR's S-Pol S-band radars collected data over Platteville for these icing cases.
- * Explore moment data, validate icing with NASA's Icing Remote Sensing System (NIRSS) positioned at Platteville, icing Pilot Reports.

In-flight Icing Detection Using S-band Polarimetric Weather Data

Ellis, S., Serke, D., Hubbert, J., Albo, D., Weekley, A. and Politovich, M.

(Brandes and Ikeda 2004) (Ikeda et. al. 2009) (Vivekanandan et. al. 1999) (Plummer et. al. 2010) (Bernstein et. al. 2005)

* The remainder of this poster will illustrate a case study example of the above IHL flow diagram for the 'Mixed-Phase' calculation only.

35th AMS Radar Conference, 26-30 September, 2011, Pittsburgh, PA

IHL Algorithm

* Soundings are hourly RUC profiles at closest gridpoint to Platteville, CO ^{*} Freezing Level output shown below: (ring due to enhanced moment values) * Frz. hgt. value adjusts hourly model sounding to a best 0° level * PID classifies the radar echoes with fuzzy logic and polarimetric membership functions at each gate. * PID helps mask 'supercooled liquid', 'irregular crystal' and 'dry snow' types * Other particle types excluded. * NDDA uses numerous spatial statistical measures of reflectivity, converts into 'interest' scores with fuzzy logic. (Reflectivity median, STDEV and textures values over 15 and 100 km ranges from each gate.) * 'Mixed-phase' algorithm uses similar approach but with polarized moments * Interest functions for four components of the current 'Mixed-phase detection' algorithm shown at left. Mixed-phase_interest = (MeanZDR_int + MeanKDP_int + stdevZDR_int + stdevKDP_int) / 4 * If 'Mixed-phase Interest' > 0.5 then supercooled liquid exists

* CSU CHILL at upper right * NIRSS at circle (-10,-25) * Time shown: 19:54 UTC - Moderate severity PIREP - Moderate NIRSS severity

Summary

* The prototype IHL product derives a high interest value over Platteville, CO for known times of in-flight icing from localized PIREPs and output from NASA's loing System during the 2010/2011 field campaign.

- * Future work: 1) Validation with KCLE polarized radar 2012
 - 2) Tune algorithm against icing/non-icing cases
 - 3) Test against large drop/small drop cases