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1 INTRODUCTION

A new radar forward operator for simulating terrestrial
weather radar measurements from NWP model output
is currently developed. It is suitable for a broad range
of applications like, e.g., radar data assimilation in the
framework of Ensemble Kalman Filter Systems, or ver-
ification of cloud microphysical parameterizations. This
operator calculates the radar observables reflectivity
and radial wind (later also polarisation parameters) from
the prognostic model output. The rationale is to have
a comprehensive radar simulator, which comprises all
relevant physical aspects of radar cloud measurements
in a quite accurate way, but at the same time to provide
the possibility for simplifications in a modular fashion.
This enables the user to configure and tailor the oper-
ator for special applications, that is, to find the ”best”
balance between physical accuracy and computational
effort.

This operator is currently implemented as a mod-
ule in the non-hydrostatic fully compressible state-of-
the-art NWP model of the Consortium for Small Scale
Modeling (COSMO), called ”COSMO-model” (formerly
”Lokal Modell” LM; Doms and Schättler, 2002; Baldauf
et al., 2011). COSMO is a cooperation of 7 European
National Meteorological Services, and Germany is one
of the partners. More information can be found online
at http://www.cosmo-model.org.

The new weather radar network of the DWD com-
prises 17 C-Band dual polarisation Doppler radar sys-
tems evenly distributed throughout Germany for com-
plete coverage. They provide unique information about
cloud structure and precipitation in three dimensions
and high spatial and temporal resolution. Up to now
these data are not used in the operational COSMO-
model of DWD, except within the framework of the la-
tent heat nudging and for a simple nudging method of
the radial wind. Future applications are however planned
to make better use of radar data within an upcoming
new LETKF data assimilation system (Hunt et al., 2007),
which will be based on a convection-allowing high reso-
luton ensemble forecasting system (grid spacing 2.8 km
over Central Europe, 40 members, 8 runs a day out to
+21 h). Here, the use of weather radar data is a promis-
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ing means for improvements of the model initial state
for short-term precipitation forecasts.

However, the observations (reflectivity, radial veloc-
ity, polarisation parameters) are not directly compara-
ble to the prognostic variables of the model (hydrome-
teor mass contents and sometimes number densities).
But the above-mentioned LETKF-assimilation system
has the property to be able to work with data directly in
measurement space instead of model space with the
help of forward operators. So this will be an important
future application of our radar forward operator. On the
other hand, a more common application is to compare
the output of numerical simulations with radar observa-
tions in the context of cloud microphysics verification.

Given this planned range of applications, the radar
forward operator has to be applicable on supercom-
puter architectures in an operational environment, and
efficiency is a major design criterion, which requires for
good parallelization and vectorization properties of the
code. This is different to other radar forward operators
on the market. Because the COSMO-model (like most
of the state-of-the-art NWP models) is written in For-
tran 95, this programming language is also applied for
our radar operator.

2 Design of the forward operator

The basic purpose of a radar forward operator is to sim-
ulate the measurement process of radar observables
like radial wind vr, equivalent reflectivity factor Ze or po-
larisation parameters within the ”virtual reality” of an
NWP model. For the sake of simplicity, we will only re-
fer to vr and Ze in the remainder of this paper, but gen-
eralisation to polarisation parameters should mostly be
straight-forward. For now, we restrict ourselves to ter-
restrial radars which do volume scans in horizontal mode,
i.e., consecutive azimutal sweeps at different fixed ele-
vation angles.

The main ingredients of radar simulation are depicted
schematically in Figure 1. Here, the green mesh sym-
bolizes a typical grid configuration of an NWP model,
overlayed over the typical measuring volume of a weather
radar along a bended ray path. Backscattering and ex-
tinction effects are symbolized by arrows, and the beam
weighting function is shown on the right.

Mathematically, the radar measurement operators for



Fig. 1: Conceptual sketch of the relevant physical processes and properties of a radar measurement along a single
ray path, overlayed with a typical discrete grid representation of variables in an NWP model (green).

reflectivity and radial wind can be written as spatial
weighted averages in the in quite general form as given
in Figure 3, Equation (5) – (4), where the superscript(R)

denote ”radar measured” and the equations are for a
single radar pulse volume which is centerd around a
distance r0 from the radar. The explanation of the var-
ious symbols can be found in the figure caption. Note
that we take into account only a simplified "box-car"
range weighting function. It also has to be mentioned
that one arrives at the present formulation for Z(R)

e only
if one assumes the two-way beam weighting function
f 4 to be Gaussian, an assumption which enters the pic-
ture, because the radar processor assumes this when
converting the measured power values to output values
for ZR

e .
Note also that we have presented the operator equa-

tions relative to the ”beam system”, i.e., distance along
ray path r, and horizontal and vertical angles φ and θ

relative to the ray in the beam center, see Figure 2 (a
”beam” can be thought of consisting of an infinite num-
ber of rays bundled within the pulse volume). In this
quasi-spherical system, the beam center is situated in
the equator plane.

However, measured radar data from volume scans
(the ones we want to simulate ultimately) are usually
given in the ”radar system”, radial distance r, azimut

α and elevation ε, where these angles are measured
relative to the antenna azimut and elevation angles α0
and εo. This is different from the beam system in that
the equatorial plane is the tangential plane to the earth
surface, and both systems are tilted with respect to
each other. Figure 2 shows a simplified sketch of the
different beam- and radar coordinates.

To take this into account, the operator equations are
transformed from the beam system to the radar system
using approximations given by Blahak (2008a). Also,
we have so far neglected that output values in radar
data sets are usually averages over many consecu-
tive pulses and, at the same time, rotating antenna to
achieve statistical signal stability. As shown by Blahak
(2008a), this leads to a somewhat broader effective
beam weighting function f 4

e .
Both effecs ultimately result in a ”name change” φ →

α, θ → ε in the integrals and replacment of f 4 by f 4
e .

The resulting operator for 〈Z(R)
e 〉 is given in Figure 4,

Equation (7). The same f 4
e is also applied to vr. Note

that the azimutal reference coordinate for the averaged
data values is now α∗, the center of the averaging in-
terval ∆α, over which the many pulses at different α0-
values habe been averaged.



Fig. 2: Conceptual sketch of the different coordinate
systems: ”beam system” consisting of r, φ , and θ ;
”radar system” consisting of r, α, and ε. For simplic-
ity, only r0, α0 and ε0 of the pulse volume center are
shown in this figure, but each point in space can be
referenced by either (r, φ , θ ) or (r, α, ε).

Generally, the task of radar simulation can be de-
vided into two sub-tasks:

1) Compute the field functions vr and Ze from the
modeled hydrometeor fields. In the COSMO-model, if
applying one of the ”standard” one-moment cloud schemes,
these are the mass densities Lx, x ∈ {cloud drops, rain
drops, cloud ice, snow, graupel}. In case of applying the
implemented Seifert-Beheng two-moment cloud micro-
physical scheme, there is also a hail class and num-
ber densities Mx for all species (Seifert and Beheng,
2006; Seifert et al., 2006; Blahak, 2008b; Noppel et al.,
2010). To compute vr and Ze, the particle size distri-
butions (PSDs) of the species are derived from the
model variables in a model-consistent way, i.e., using
the same assumptions for the PSDs (generalized gamma
distribution) and on the mass-size- and fallspeed-size-
relations (power laws) as in the model, so that σb and
σext can be integrated over the size distributions and
summed up over all species to get Ze and the attenua-
tion coefficient Λ.

2) ”Radar sampling” of these field functions taking
into account the most relevant characteristics of a radar
measurement: beam bending by atmospheric refrac-
tion, attenuation (integral over Λ along the travel path
to a specific location within the pulse volume), beam
function weighted volume averaging, and shadowing
by orographic obstacles.

For task 1), we decided to compute vr and Ze on the
native grid of the NWP model and interpolate these
quantities to the polar radar grid to subsequently per-
form task 2). This leads to the flow chart depicted in

Figure 5.
The computation of σb and σext is based on full Mie-

scattering and temperature dependent refractive index
of the particles and is described in detail in Blahak
(2007). It is possible to switch to simpler and computa-
tionally more efficient formulas employing the Rayleigh
approximation together with simple approximations for
the refractive index. Special care is given to partially
melted particles: the user may choose from different
Effective Medium Approximations (EMA) for the effec-
tive refractive index of ice-water-air mixtures, and from
different melting models for cloud ice, snow, graupel,
and hail, which are either based on one- or two-layered
spheres.

No polarization parameters are computed yet, but we
intend to implement code for one-layered spheroidal
particles in the future, with help of code from Pfeifer
et al. (2008). However, this will drastically increase the
computational effort, so that it is necessary to simplify
the computations, e.g., by the use of lookup tables,
which cover the relevant range of the basic parameters
(T , Lx, Mx, local elevation) and depend on assumptions
about canting angle distributions and axis ratios of the
spheroids as function of size.

For task 2), beam bending is computed based on
Snell’s law for a continuous spherically stratified medium,
and the refractive index is computed as a function of
temperature T , pressure p and vapor pressure e. Op-
tionally, to save numerical effort, the well-known "4/3-
earth" approximation (based on standard atmospheric
conditions, constant in time) is implemented as an al-
ternative.

For pulse-volume-averaging in azimutal and eleva-
tional direction, efficient Gauss-Legendre quadrature
is employed, with a selectable number of integration
points. The integrals are evaluated within the 90-% to-
tal energy range of the two-way beam function, i.e.,
±1.29θ3/2 centered around the beam axis. Values from
the model grid are interpolated linearily to the positions
on the radar grid, which are determined by the com-
puted ray paths, antenna azimuts and elevations and
necessary auxiliary interpolation points needed for the
Gauss-Legendre quadrature.

As mentioned earlier, a realistic range weighting (e.g.,
”matched filter”) is not taken into account so far, but
radar measurables are rather computed only at the mid
distances r0. Although technically not difficult, it has not
been implemented yet because, for our typical applica-
tions, the horizontal model grid spacing is larger than
the radar range bin, so that range weighting would have
nearly no effect. However, this is not necessarily the
case for averaging in the other directions, especially in
the vertical (elevational), where the model grid spacing
can be as small as 100 – 300 m or even less.

Optionally, the elevational and/ or azimutal averaging
can be switched off to save computing time, in which



Basic field functions for the radar operator:

Reflectivity η : η(r,φ ,θ) =

∞∫
0

σb(D)N(D,r,φ ,θ)dD (1)

Attenuation coefficient Λ: Λ(r,φ ,θ) =

∞∫
0

σext(D)N(D,r,φ ,θ)dD (2)

Effective reflectivity factor: Ze(r,φ ,θ) = η(r,φ ,θ)
λ 4

π5 |Kw,0|2
(3)

Reflectivity weighted average fall speed of hydrometeors: vT =

∞∫
0

σb(D)N(D)vT (D)dD

η
(4)

Radar operator for effective reflectivity factor Ze in ”beam system”, single beam:

Z(R)
e (r0) =

r0+cτ/4∫
r0−cτ/4

π∫
−π

π/2∫
−π/2

Ze(r,φ ,θ)

`−2
n (r,φ ,θ)︷                                 ︸︸                                 ︷

exp

−2
r∫

0

Λ(r′,φ ,θ)dr′

 f 4(φ ,θ)

r2 cosθ dθ dφ dr

r0+cτ/4∫
r0−cτ/4

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)

r2 cosθ dθ dφ dr

(5)

with `−2
n beeing the path integrated attenuation by precip from the radar to location (r,φ ,θ).

Radar operator for radial velocity in ”beam system”, single beam:

v(R)r (r0) =

r0+cτ/4∫
r0−cτ/4

π∫
−π

π/2∫
−π/2

`−2
n

 ∞∫
0

σb(D)N(D,r,φ ,θ) [(~v− vT (D)~e3) ·~er] dD

 f 4(φ ,θ)

r2 cosθ dθ dφ dr

r0+cτ/4∫
r0−cτ/4

π∫
−π

π/2∫
−π/2

η(r,φ ,θ)
`2

n

f 4(φ ,θ)

r2 cosθ dθ dφ dr

=

r0+cτ/4∫
r0−cτ/4

π∫
−π

π/2∫
−π/2

(~v ·~er)
η

`2
n

f 4

r2 cosθ dθ dφ dr

r0+cτ/4∫
r0−cτ/4

π∫
−π

π/2∫
−π/2

η

`2
n

f 4

r2 cosθ dθ dφ dr

−

r0+cτ/4∫
r0−cτ/4

π∫
−π

π/2∫
−π/2

(~e3 ·~er) vT
η

`2
n

f 4

r2 cosθ dθ dφ dr

r0+cτ/4∫
r0−cτ/4

π∫
−π

π/2∫
−π/2

η

`2
n

f 4

r2 cosθ dθ dφ dr

(6)

Fig. 3: Equations for the radar operator in quite general form. Spatial coordinates are given in the ”beam system”,
i.e., distance along ray path r, horizontal and vertical angles φ and θ relative to the radar beam center ray. r0
is the distance to the pulse volume center, f 4 is the two-way beam weighting function, N(D) is the particle size
distribution (PSD) as function of diameter D, σb the backscattering coefficient, σext the extinction coefficient, ~v the
wind vector, vT the terminal fall speed of hydrometeors, ~e3 the unit vector upwards perpendicular to the earth
surface, and~er the unit vector in radial ray path direction.



Radar operator for Ze in ”radar system” taking into account azimutal averaging:

〈Z(R)
e 〉(r0,α∗,ε0) =

r0+cτ/4∫
r0−cτ/4

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

Ze(r,α,ε) exp

−2
r∫

0

Λ(r′,α,ε)dr′

 f 4
e (α,ε)

r2 cosε dε dα dr

r0+cτ/4∫
r0−cτ/4

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

f 4
e (α,ε)

r2 cosε dε dα dr

(7)

with f 4
e = effective beam weighting function of an azimutally scanning radar:

f 4
e (α,ε) = exp

{
−8 ln2

((
(α−α∗) cosε

α3,e f f ,0 +(cosε0−1)∆α (1− exp(−1.5∆α/θ3))

)2

+

(
ε− ε0

θ3

)2
)}

(8)

Fig. 4: Equations for the Ze-operator transformed to the ”radar system”, along with the effective beam weighting
function f 4

e of an azimutally scanning weather radar after Blahak (2008a). An inherent assumption herein is that
the single-beam antenna pattern has been approximated by the usual Gaussian function. 〈Z(R)

e 〉 represents an
average value over several consecutive pulses α∗ is the center of the averaging interval (usually ”the” azimut in a
radar data set), ∆α is the averaging intervall of the consecutive pulses, θ3 is the 3-dB-oneway beam width, and
α3,e f f ,0 is the effective 3-dB-oneway beam width at 0 elevation, which only depends on the radar specific ratio
∆α/θ3 and can be deduced by interpolation from Table 1 of Blahak (2008a).

case the radar measurables are taken as linearily in-
terpolated values on the centerlines of the (bended)
beams.

The following additional processes are neglected so
far:

• attenuation by atmospheric gases→ is already cor-
rected for in most radar signal processors),

• aliasing of vr into the Nyquist-range (could be imple-
mented easily),

• radar miscalibration → not exactly known for most
radar systems,

• attenuation by wetted radome,

• and probably others.

3 Computational issues

Applicability of the code on parallel and vector machines
is a major design criterion, as well as computational ef-
ficiency. This is a very important topic in the context of
our development work, but it is mainly a technical mat-
ter. Nonetheless, a few aspects shall be mentioned in
this paper.

The task of simulating an arbitrary number of radars
has to be parallelized in order to perform well on super-
computers, and the parallelization has to be done in a
way that each computing processor gets about equal
work to do, to achieve a good load balancing and avoid
idle times of single processors.

The strategy of the COSMO-model (and most NWP
models) is to divide the simulation domain horizontally
in a number of cubes with equal base area, so that
each processor computes the time integration of the
model equations only for such a sub-domain and there
is comparable work load per processor. Communica-
tion between ”neighbouring” processors is necessary
in each time step, because the finite-difference calcu-
lation of horizontal gradients at the domain boundaries
requires the exchange of data values across domain
borders. However, for current supercomputer architec-
tures, this communication can be very time consuming,
so it is wise to avoid commmunication as much as pos-
sible.

Within this domain decomposition, the radar bins (po-
lar coordinates) including the auxiliary grid points for
the numerical quadrature of a specific radar might be
distributed asynchroneously over different neighbour-
ing processor domains: for regions close to the radar,
the bins are much denser distributed as compared to
far away from the radar, and the number of bins per
processor region depends on the radar position. This
is a source of some load imbalance. However, the first



Fig. 5: Conceptual flow chart of the radar forward operator. The different colors denote the different stages of
development: blue = done, purple = in progress, red = to do.



step of radar simulation is to compute some field func-
tions on the radar grid and then to interpolate them to
the locations of the radar bins, and load imbalances
cannot be totally avoided. The premise here is to mini-
mize the computations involved in this step.

The last step be the output of the data of single radar
stations to separate files, which means that these data
have to be collected to a single processor for writing
to a file. What is done inbetween these steps depends
on the type of beam propagation computation. If the
time-constant 4/3-earth model is applied, the horizon-
tal positions and heights of the radar bins can be com-
puted only based on the bin coordinates, and interpo-
lated data can be collected directly to one output pro-
cessor per radar station. There, re-sorting into regu-
lar 3D arrays, summing up the attenuation along single
ray paths and computing the averaging integrals can
be performed before output. If there are considerably
less radar stations than processors, this can be very
imbalanced, but it restricts the costly communication to
a minimum.

If, however, the beam propagation (height of radar
bin as function of distance) is computed every time step
base on actual refractive index values, a second com-
munication step is necessary, because the method in-
volves the iterative computation of radar heights along
each ray path from the radar site outwards. To aviod
processors waiting for the results of others and to ease
the organization of communication, an auxiliary grid
consisting of vertical ”azimutal slices” centered around
the radar stations is defined, and all slices from all radars
are distributed evenly over the processors. After com-
municating the necessary interpolated data to these
slices, beam propagation respectively radar bin heights
can be computed independently on each processor,
and the radar quantities can be interpolated in the verti-
cal to these heights. Then, essentially the same collec-
tion of whole radar station data sets on single output
processors and attenuation and integration computa-
tions follow as for the time-constant beam propagation.
The additional communication step is costly, but it leads
to a well balanced computation of beam propagation.

A main improvement could be, if it would be possible
to organize the output of the data to radar station files in
a somewhat different way, so that each processor (not
only 1 processor per station) could be involved here.
However, no good solution has been found until now.

4 First results and conclusions

First simulations with a development version of the new
radar forward operator and the COSMO-model have
been performed on the NEC SX9 vector-parallel super-
computer of DWD. One exemplary result is presented
in the following to conclude this paper.

In an idealized framework, a convective system is
triggered by a warm bubble at t = 0 within environmen-
tal conditions similar to those described by Weisman
and Klemp (1982). The horizontal model grid spacing
has been chosen to 1 km with a time step of 6 s. One
radar station is simulated with volume scans every 5
minutes (20 elevation, 360 azimuts, 130 range bins of
1 km each). After about two hours, a large squallline-
type system has evolved from the cold forward outflow
(coldpool) of an inital pair of rotating supercells. In a
layer up to about 2 km AGL, large raindrops dominate
the hydrometeor ”mix”, whereas partially melted grau-
pel and supercooled raindrops co-exist in the adjacent
layer up to about 6 km height. Above, dry graupel- and
smaller cloud ice particles are present.

Figure 6 compares modeled Ze-values from this time
on PPI-surfaces at an elevation of 4.5◦, obtained with
different configurations of the reflectivity calculation and
at the two wavelengths 5.5 cm and 3 cm.

It can be seen that using a most simple analytic Rayleigh
approximation (no attenuation) for all species (compu-
tationally very cheap) leads to essentially the same
results at the two different wavelengths, as it should
be. Considering full Mie-scattering without attenuation
leads to stronger reflectivities. In this case, the effect is
mainly due to a much better representation of the par-
tially melted graupel, using a suitable EMA (Maxwell-
Garnett) for the refractive index of the melting particles
for the Mie scattering cross sections. For the analytic
Rayleigh formulation above, a much simpler formula
(Oguchi, 1983) has been used, which is known to be
problematic for ice-water-air mixtures due to the largely
different refractive index values of water and ice/air.

When taking further the attenuation by hydrometeors
into account, Ze-values are considerably reduced, and
the effect is stronger at the shorter wavelengths, as it
was to be expected. The strong attenuation in this case
is again caused by the partially melted graupel parti-
cles, whose extinction cross sections are much larger
that those of raindrops of the same mass.

All in all, the first development version of the forward
operator seems to produce promising results. Simula-
tions with more than one radar have also been per-
formed and revealed no fundamental problems. When
using the Rayleigh approximation, computing times for
the operator are usually smaller than those for the ”rest”
of the model.

However, the program is not complete yet (e.g., po-
larisation parameters missing), and more work has to
be invested in making the Mie-scattering computations
more efficient, which, at the moment, increase the com-
putation time of the radar operator by approximately
one order of magnitude.



Fig. 6: Idealized study (see text): modeled Ze-values from t = 2 h for ε0 = 4.5◦ (PPI), obtained with different config-
urations of the reflectivity calculation (columns) and at the two wavelengths 5.5 cm and 3 cm (rows).
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