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Estimation of noise induced variances in the dual-pol moments using 
simple parametric model of the recorded signal.
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Why do we have to model received signal?

The statistical properties of the received signal and 
derived moments are quite well analyzed in the literature 
[Bringi 2001, Skolnik 1990, Doviak 1993, Melnikov 
2004]. The direct analysis is quite complex and mostly 
limited to estimation of the variances using the first order 
approximation. 
The ability to tabulate additional statistical parameters, 
such as confidence intervals, would be beneficial to the 
practical applications. The multi-equation dual-pol QPE 
would be one of those applications.

The Model

The first step toward that goal is to produce a simplest 
possible model of the received signal. The proposed 
model utilizes the following three approximations: 
	 he distribution of the random complex voltages 

SN (aka I&Qs) of the noise is the circular symmetric 
complex normal distribution with Γ = PΝ, where 
PΝ is a noise power PΝ = E(S 2

Ν) 
	 he complex voltages SS of the signal from the 

precipitation are also described by the circular 
symmetric complex normal distribution with  
Γ = PS, where PS is a signal power PS = E(S2

S)
	 the signal in the vertical(V) channel is the exact copy of 

the signal in the horizontal(H) channel, but scaled and 
phase-shifted to simulate ZDR and ΦDP

	 the noise signals in H and V channels are independent/
uncorrelated.

	 the spectral characteristics of the signal are irrelevant to all 
dual-pol moments.

How it can be used?

The model is defined in terms of just three sources of 
normally distributed random complex numbers controlled 
by just four parameters – PN , PS , ZDR , and ΦDP. Almost 
all moments expected values and variances can be 
determined analytically within the framework of this model. 
The model can be used as a core of the dual-polarization 
weather radar simulation, but, for completeness, one 
would have to apply a spectral filter to the white spectrum 
simulated signal in order to have realistic Doppler 
velocities and the  Doppler width (W) moment. 
The single most important use of the model is a study of 
moments properties via the Monte-Carlo simulation.

Why do we need a Monte-Carlo simulation?

The detection thresholds are determined by the required 
max percentage of false positive, which is a corresponding 
quantile of the moment values distribution.  All computed 
dual-pol moments are not normally distributed, and, even 
if the variance of the moment is expressible analytically, 
the quantile function of the distribution is not known or 
tabulated. 
Some of the post-processing stages rely on the fuzzy logic 
classification to switch between computational algorithms. 
The Monte Carlo simulation is the only feasible  and 
expedient way to validate those data processing stages.

Terms/Notation used here.

Each transmitted pulse produces two sequences of the  
per-range bin complex voltages – one for each polarization, 
Hi and Vi , where H and V were previously reffered as 
S_h and S_v.  All dual-polarization moments and reflectivity 
Z are computed from three basic moments:

Rhh = (Σi=0...N HiHi*)/N - PN

Rvv = (Σi=0...N ViVi*)/N - PN

Rhv = (Σi=0...N HiVi*)/N

Demo #1: Rhh and Rhv at different SNR
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Standard deviation of ΦDP as a function of ρhv.
(Processing interval of 512 pulses)

References 
Bringi, V.N. and V.Chandrasekar. 2001. Polarimetric Doppler 
Weather Radar: Principles and Applications. Cambridge, New 
York: Cambridge University Press.
Doviak R.J. and R.S.Zrnic. 1993. Doppler Radar and Weather 
Observations. San Diego: Academic Press. Skolnik, M. 1990. 
Introduction to Radar Systems, McGraw-Hill.
Melnikov , V.M. 2004.Simultaneous Transmission Mode for 
the Polarimetric WSR-88D: Statistical Biases and Standard 
Deviations of Polarimetric Variables, University of Oklahoma. 

Single and dual polarization models.
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Demo #2: Standard deviation of ΦDP

1.5dB.  An obvious next step is to incorporate the cross 
term, Rhv, in the sum. But it is a complex number! There 
are two ways to reduce the full sum

	R = (Rhh + Rvv +2Rhv)/4

to a real number. One way is to replace Rhv with |Rhv|, 
another is to replace Rhv with Re(Rhvexp(-iΦDP)). Attempts 
to use the first approach did not produce a desirable 
result. One reasonable explanation is that taking absolute 
value of Rhv introduces upward bias when the signal is low. 
The second approach results in 3dB gain in reflectivity, 
effectively compensating for losses from the splitting 
power into two channels.
The  use of ΦDP to improve reflectivity data is feasible – 
it is possible to determine ΦDP in all data bins in the first, 
preliminary processing stage and then to use obtained 
data to enhance reflectivity data in the secondary 
processing stage. 
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Scatter plot of Rhv and Rhh moments at SNR = 0, 1, and 2.
 (Processing interval of 512 pulses,  ΦDP=75deg)
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Demo #3: Analysis of the detection 
thresholds. 

The dual-polarization weather radars have a multitude 
of advantages over single-polarization radars, but there 
is one  small problem – the most important moment, 
reflectivity, is measured in just one of two channels. As 
a result, in the simultaneous transmission mode (STAR), 
the effective transmitted power is a half of the power 
transmitted by the single-polarization radar equipped with 
the same transmitter.  The two-fold drop in the effective 
power    results in the 3dB drop in the sensitivity.  One can 
combine reflectivity from horizontal and vertical channels, 
but that combination can, in theory, get us back only 




