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1. INTRODUCTION 
Enhanced data quality would improve the application 
of radar data in various meteorological algorithms. 
As we know, ground clutter and noise are two major 
factors that adversely affect the quality of radar data. 
Ground clutter, which is normally present at low 
elevation and near range radar observations, heavily 
biases weather measurements such as power, mean 
velocity, spectrum width, and polarimetric 
observables. Noise, another main source of error, 
limits radar sensitivity of weak weather echoes and 
causes measurement biases. Therefore, the removal 
of ground clutter and noise effect is desired to obtain 
accurate measurement of weather phenomena.  
 
In cooperation with Enterprise Electronics 
Corporation (EEC), the Atmospheric Radar Research 
Center (ARRC) at the University of Oklahoma (OU) 
has developed a Spectrum-Time Estimation and 
Processing (STEP) algorithm, aiming to improve the 
quality of polarimetric radar data in the presence of 
ground clutter and noise. STEP algorithm integrates 
three novel algorithms recently developed in ARRC, 
such as Spectrum Clutter Identification (SCI, Li et al. 
2011), Bi-Gaussian Clutter Filtering method (BGCF), 
and the Multi-lag Moment Estimation method 
(MLAG, Lei et al. 2009, Cao et al. 2010). 
Accordingly, STEP algorithm consists of three major 
modules:  SCI, BGCF, and MLAG, that fulfill three 
functions: clutter identification, clutter filtering and 
moment estimation, respectively. STEP algorithm has 

been tested using the C-band polarimetric research 
radar OU-PRIME (University of Oklahoma— 
Polarimetric Radar for Innovations in Meteorology 
and Engineering) (Palmer et al. 2011). This paper 
intends to give an overall introduction of STEP 
algorithm and demonstrates its performance using 
simulated and real data.  
 
2. METHODOLOGY OF STEP ALGORITHM 
STEP algorithm includes three major modules as 
shown in the flowchart in Fig. 1. First, the I/Q data 
from the horizontal (H) and vertical (V) polarization 
channels are input into the SCI module (step 1). This 
module makes the decision on the identification of 
clutter contamination. If there is clutter 
contamination, the BGCF module (step 2) will 
remove the ground clutter in the spectral domain and 
reconstruct I/Q with the filtered spectrum for moment 
estimation in the MLAG module (step 3). A 
complementary function is included in the BGCF 
module. When the Bi-Gaussian Clutter Filtering 
method has a slow convergence, or fails to converge, 
a single-Gaussian clutter filtering method, which is 
similar to the concept of GMAP, is applied. If there is 
no clutter contamination, the original I/Q data are 
conveyed directly to the MLAG module (step 3) to 
estimate polarimetric parameters. 
 

2.1 Spectrum Clutter Identification (SCI) 
Li et al. (2011) recently proposed the spectrum clutter 
identification algorithm, which uses a fuzzy-logic 
classification framework with four characteristic 
inputs, i.e., spectral power discriminant (SPD), 
spectral phase fluctuation (SPF), power texture (PT), 
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and spectrum width texture (SWT). This algorithm is 
designed for the application of single-polarization 
radar data. The details of SCI algorithm can be found 
in Li et al. (2011). Compared to the clutter mitigation 
decision (CMD) algorithm developed by the National 
Center for Atmospheric Research (NCAR), SCI 
algorithm shows a better probability of detection 
(POD) and probability of false alarm (PFA), 

especially for radar echoes with a low 
clutter-to-signal-ratio (CSR) and those with a 
Doppler velocity close to zero. The SCI algorithm 
used in STEP algorithm includes an additional input 
parameter, i.e., correlation coefficient (ρhv), for its 
implementation on polarimetric weather radar. The 
fuzzy range of ρhv is chosen from 0.8 to 0.95 in STEP 
algorithm.  

 

 

Fig. 1 Flowchart of STEP algorithm 
 

2.2 Bi-Gaussian Clutter Filtering (BGCF) 
The BGCF algorithm removes ground clutter in the 
spectral domain. The fundamental assumption of 
BGCF is that both weather echoes and ground clutter 
have a power spectrum of Gaussian shape. The total 
power spectrum of the radar signal consists of three 
components: ground clutter, weather signal, and 
noise; as modeled by  
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The ground clutter is assumed to have zero mean 
Doppler velocity, spectrum width σc, and maximal 

power density sc. The weather signal has mean 
velocity vw, spectrum width σw, and maximal power 
density sw. The noise component has a constant 
power density nε. These unknown parameters are 
fitted to the observed power spectrum using a 
standard non-linear fitting algorithm (e.g., Levenberg 
-Marquardt method). Considering the window effect 
during the calculation of power spectrum, three 
aggressive window functions: Blackman-Harris, 
Blackman, and Hamming windows are applied in 
STEP according to different signal-to-noise ratios 
(SNR). As suggested by the 3rd step MLAG, BGCF’s 
output should be converted into time-domain to do 
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the moment estimation. It is noted that the nonlinear 
fitting using the bi-Gaussian model has separated the 
contributions of weather signal and clutter to the total 
power spectrum. The Fourier spectrum of original 
signal, therefore, can be modified and reconstructed 
accordingly to remove the clutter portion. The new 
I/Q data are then calculated through the Inverse Fast 
Fourier Transform (IFFT) of reconstructed Fourier 
spectrum, which discards the clutter portion. The 
phase of clutter-contaminated portion in the spectrum 
is substituted by random phase to emulate the phase 
of weather signal. 
 
There are two issues that might affect the real-time 
implementation of BGCF. The nonlinear regression 
might have too much iteration before achieving 
convergence. Moreover, the regression might not be 
able to converge if the observed spectrum is not well 
represented by the bi-Gaussian model. In those cases, 
BGCF applies a complementary fitting approach with 
a single-Gaussian weather model to solve the 
problem. The single-Gaussian model only considers 
the spectrum of weather and noise, as shown in 
equation (2).  
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The only difference between the fittings using 
single-Gaussian model or bi-Gaussian model is 
whether the spectrum lines within clutter bins are 
applied for the fitting. The fitting approach using 
single-Gaussian model does not consider those bins 
and only fits weather and noise spectrum. The range 
of clutter bins is estimated using an empirical 
method. A Gaussian curve with a spectrum width of 
0.5 m/s is assumed for the clutter spectrum. The 
amplitude of the Gaussian curve equals the mean 
power density within the range of ±0.1 m/s. The 
clutter range is within ±vc, where vc denotes the 
velocity at which the Gaussian curve arrives at the 
noise floor in the power spectrum.  

2.3 Multi-Lag Moment Estimator (MLAG) 
The concept of multi-lag processing has been 
described in Lei et al. (2011). Cao et al. (2010, 2011) 
have applied an adaptive weighting to fit the 
auto-correlation function (ACF) and/or 
cross-correlation function (CCF) of radar signals. The 
fitted ACF and CCF can then be used to estimate 
radar variables such as signal power Sh (or Sv), 
differential reflectivity ZDR, correlation coefficient 
ρhv, spectrum width σh (or σv), differential phase 
(ΦDP) and radial velocity vh (or vv). The MLAG 
module of STEP algorithm is briefly addressed as 
follows.  
 
As for weather signals, ACF for horizontal 
polarization (Ch) and ACF for vertical polarization 
(Cv) and CCF Chv are all modeled by a Gaussian 
function Cp (p: h, v, and hv), which is:   
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where m is the lag number of ACF/CCF; wp is the 
decorrelation length of ACF/CCF. The Gaussian 
ACF/CCF can be fitted through multiple lags of 
ACF/CCF estimated from I/Q data. The fitting 
process of MLAG is to minimize the cost function χp 
as:  
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Considering weather signals may decorrelate at 
farther lags, the cost function in equation (6) applies 
an adaptive weighting of the Gaussian model itself.  
 
The estimation of radar moments is based on the 
nonlinear fitted ACF and CCF. The equations are 
given as follows. 
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where wn is the number of usable lags; the notation 
“arg[.]” represents the phase of a complex number; 
the notation “unwrap[.]” means unwrapping the 
velocity estimation at different lags (m>1). Since the 
velocity aliasing is different for estimations from 
different lags of ACF, the unwrapping process is 
needed before averaging.  
 
It is worth noting that the more usable lags, the better 
the multi-lag fitting result. The relation between the 
number of usable lags wn and spectrum width σ is:  
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where λ is the radar wavelength and Ts is the pulse 
repetition time (PRT). It is obvious that the wider the 
spectrum width, the lower the usable lag number. For 

example, the C-band OU-PRIME radar normally 
operates with a pulse repetition frequency (PRF) of 
1180 Hz and its va is 16.07 m/s. Given that a weather 
signal has a spectrum width of 0.5-2 m/s, the usable 
number is 3-10. For S-band radar, if the conditions 
are the same, the number of usable lags will be 
double. Consequently, it is expected that the MLAG 
algorithm would perform better on S-band over 
C-band. 
 
3. PERFORMANCE OF STEP ALGORITHM 
3.1 Clutter Identification 
The clear air observations at low elevation scan (0 or 
0.5 degree) are assumed to be the truth of ground 
clutter. High elevation (3.5 degree) observations of 
storm, which are less affect by the ground clutter, are 
assumed to be the truth of weather signals. The storm 
and clear air time-series I/Q data are coherently 
combined to simulate the clutter-contaminated 
weather data for the evaluation. There are total 18 
experimental datasets chosen from events of 
04/12/2009, 10/21/2009, 12/02/2009, 01/21/2010, 
04/17/2010, 04/18/2010, 05/13/2010, 05/14/2010, 
and 09/08/2010, which all include widespread 
stratiform precipitation. The clear air data are 
collected on 08/04/2010 and 01/13/2011. For the 
comparison, the CMD algorithm is run and evaluated 
with the same dataset as well.  
 

 

 

Fig. 2 Comparison of (a) POD and (b) PFA between CMD and SCI algorithms for 18 experimental datasets. 
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Fig. 2 shows the probability of detection (POD) and 
probability of false alarm (PFA) of clutter 
identification results using SCI and CMD algorithms. 
Clutter truth for cases 1-9 come from clear air 
observation at 0.5 degrees and the rest cases are for 0 
degree observation. SCI generally has higher 
detection rate and lower false alarm rate than CMD 
algorithm, which has been widely recognized as a 
sufficient clutter identifier and has been applied in 
the NEXRAD network. On average, SCI has POD of 
90.8%, greater than CMD’s 84.5%, and a low PFA 
around 0.9%, lower than CMD’s 1.73%. 
 
3.2 Clutter Filtering 
The performance of BGCF depends on the number of 
pulses used to estimate the power spectrum. Fig. 3 
shows the trend of this dependence. The simulated 
weather signals have a spectrum width of 2.5 m/s. 

The CSR is 10 dB. The upper row shows the 
quantification for weather velocity of 2 m/s and the 
lower row is for weather velocity of 6 m/s. Solid lines 
in Fig. 3 denote the bias of BGCF processed 
moments. The vertical bars indicate the standard 
deviation of the moment estimation error. As Fig. 3 
shows, the BGCF performance is improved with 
increasing pulse number. This is reasonable because 
more data points along the power spectrum may lead 
to an improved fitting. In addition, the lower row 
shows a better performance than the upper row. This 
fact implies that fitting a spectrum with weather and 
clutter components separated out is easier than fitting 
an overlapped spectrum. It is worth noting that BGCF 
based on 64 pulses generally performs well. BGCF 
based on 32 pulses can also function well if the 
weather and clutter signals are well separated in the 
spectral domain. 

 

 

Fig. 3 The effect of pulse number on the bias and error of BGCF processed moments. Three columns from left to 
right show power, velocity, and spectrum width, respectively. Simulated data have CSR = 10 dB, and weather 
spectrum width σ = 2.5 m/s. The weather velocity is: (upper row) v = 2 m/s, and (lower row) v = 6 m/s.  
 
The performance of BGCF also depends on the CSR. 
Fig. 4 shows its quantification and compares BGCF 
results with the results of the notch filter that is 
embedded in the signal processor of OU-PRIME, 

which has a suppression of -50 dB. As Fig. 4 shows, 
the BGCF method demonstrates superb performance 
in removing the clutter contamination (much better 
than traditional notch filter method). The power, 
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velocity and spectrum width estimates have very 
small bias, especially for CSR < 30 dB. The 
estimation errors are also minor. For example, as for 
CSR < 30 dB, the errors of power, velocity, and 
spectrum width estimations are within 2 dB, 0.7 m/s, 
and 0.4 m/s, respectively. The notch filter, however, 
causes a large bias for all three moments. The bias 
and error of BGCF are insignificant for small to 

moderate CSRs. When CSR is large, e.g., CSR > 35 
dB, BGCF’s performance tends to degrade, but still 
not much. Even for CSR = 60 dB, the power bias is 
only around 3 dB, though the standard error increases 
to 9 dB. Fig. 4 also implies that the increase of CSR 
has little effect on the estimation of velocity and 
spectrum width. 

 

 

Fig. 4 The effect of CSR on the bias and error of BGCF processed moments. The three columns from left to right 
show power, velocity, and spectrum width, respectively. Simulated weather data have a spectrum width σ = 2.5 m/s, 
and a velocity v = 2 m/s. Pulse number is 64. The weather velocity is: (upper row) processing with BGCF, and 
(lower row) processing with -50 dB notch filter of OU-PRIME.  
 
3.3 Noise Mitigation 
MLAG algorithm can improve moment estimation in 
the presence of noise. The most effective 
improvements are achieved in estimating power, 
spectrum width, and correlation coefficient. Cao et al. 
(2010) have shown the quantification of MLAG 
algorithm for these three moments. The result shows 
that MLAG algorithm can effectively improve power, 
spectrum width and correlation coefficient estimation 
for SNR < 20dB. The improvement is more evident 
for low SNRs, e.g., SNR<5 dB. Another advantage of 
the MLAG method is that it can mitigate the 
contamination of second trip echoes if the radar 

applies the magnetron transmitter, which has 
automatic random phase coding. The details of the 
second trip mitigation have been specified in Cao et 
al. (2011) and are not presented here.  
 
4. CASE STUDY OF STEP ALGORITHM         
The STEP algorithm has a complete combination of 
aforementioned advantages from its three modules. 
This section gives a real data example to demonstrate 
the superior performance of STEP. Fig. 5 shows a 
case from 21 October 2009, whose data are combined 
with the clutter observation on 13 January 2011. 
Figure 5(b) shows the PPI (plan position indicator) 
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image of CSR. In the image, the pixel with CSR>0 
dB is assumed to have clutter contamination. 
Accordingly, the image of clutter truth is shown in 
Figure 5(c). Figure 5(a) shows the velocity estimation 
based on the traditional lag one estimation. It is seen 
that the clutter-contaminated pixels are biased 
towards 0 m/s. Figure 5(d) shows the clutter 

identification result, which has been processed with 
the STEP algorithm. Comparing the STEP result with 
the clutter truth, we see that the feature of the clutter 
region is quite similar for both images. Further 
comparison shows that the POD of STEP is 97.5% 
and the PFA is 2.6%. 
 

 

 
Fig. 5 Example of STEP processing (clutter identification): a) radial velocity; b) CSR; c) clutter truth; 
d) STEP identified clutter pixels (POD=97.5%, PFA=2.6%). 
 
Fig. 6 compares the original moments of 
contamination (shown in the left column) with the 
results processed by STEP (shown in the right 
column). Four rows of figures, from top to bottom, 
give the results of radar reflectivity ZH, radial 
velocity vh, spectrum width σh, and correlation 

coefficient ρhv, respectively. For radar reflectivity, the 
clutter contamination is evident in the original result 
with a very high value while it is gone in the STEP 
result. For radial velocity, the bias is clearly seen in 
the original result while it disappears in the STEP 
result, which gives a smooth velocity field in the 
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clutter region. For spectrum width, the original result 
shows larger values in the region of low SNR and 
smaller values in the clutter region. The STEP result 
reduces the estimation for the low SNR region and 
increases the estimation for the clutter region. The 
improved spectrum width image looks more smooth 
and consistent within the storm region. For 
correlation coefficient, lower values are shown for 
both clutter and low SNR regions in the original 
result. The values for these two regions have been 
increased in the STEP result, indicating that 
precipitation is present in these regions. Now the 
image of correlation coefficient is smooth enough 
that the radar echo can be easily classified as 
precipitation. From the example shown in Fig. 6, it is 
well demonstrated that the STEP algorithm can 
extensively improve the moment estimation for the 
application of polarimetric weather radar. 
 
5. CONCLUSIONS 
STEP is an advanced signal-processing framework 
that takes advantage of latest advances in clutter 
identification, filtering and moment estimation. The 

major feature of STEP algorithm is that it combines 
signal processing in both time and spectral domains, 
making it effective in mitigating clutter and noise 
effects on radar moment estimation. Compared to 
popular clutter filtering or moment estimation 
algorithms (e.g., CMD, GMAP, lag one estimator), 
the STEP algorithm adopts a more complex scheme 
and, therefore, requires more computational 
resources. This is a concern for the real-time 
implementation. As a result, further optimization and 
simplification work is on going. This work will be 
evaluated using EEC’s operational modular radar 
processor (MRP) and tested with OU-PRIME. 
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Fig. 6 Comparison of contaminated moments (left column) and STEP processed moments (right 
column). Four rows show radar reflectivity ZH, radial velocity vh, spectrum width σh, and correlation 
coefficient ρhv, respectively. 

 


