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1. Introduction 

Radar provides large amount of radial velocity and 
reflectivity in high spatial and temporal resolutions as 
the most important observation data at convective scale. 
However, traditional radar scans the atmosphere 
uniformly in space regardless of the spatial distribution 
of precipitation. Modern radar facilities, such as phased 
array radar (PAR), have much greater operational 
flexibility to scan the atmosphere adaptively according to 
different weather conditions. Therefore it is beneficial to 
develop methods of adaptive radar operation that takes 
the advantage of this new operational flexibility.  

We will consider the problem from the perspective of 
data assimilation: targeted radar observation is the 
scanning strategy from which input information to an 
assimilation system leads analysis and forecast with the 
lowest possible uncertainty. By combining model with 
radar observations, information of radar data spreads to 
other unobserved atmosphere state variables, which 
helps us understand better the atmosphere phenomena. 
Moreover, this quantitative use of radar data produces 
analysis and forecast with less uncertainties due to the 
constrain of the dynamics and physics in the model. The 
goal of targeted radar observation is to reduce further 
the uncertainties by adaptively scanning the atmosphere. 

The following experiments focus on the impact of 
different observation densities and different observation 
numbers on analysis uncertainties. 

2. Estimation of analysis error 

2.1 Kalman filter equations 

Ensemble Kalman filter (EnKF) and variational approach 
are two approaches to data assimilation. One advantage 
of EnKF is that it can, at the same time as producing the 
analysis and forecast, estimate their error covariance 
matrices. Therefore, Kalman filter equations will be used 
in the following experiments to calculate the analysis 
error covariance matrix (ECM), as shown in the 
following equation. 
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 (1) 

where is the analysis error covariance matrix;  is 
the forecast error covariance matrix; is the 
observation operator; is the observation error 
covariance matrix which describes the observation error 
structure. 

2.2 The ill estimated observation error structure. 

Equation 1 gives precise estimation of analysis error 
covariance matrix only when correct P f  and R  are 

given, while  is always considered non-diagonal and 
can be calculated from ensemble members in EnKF, the 
observation ECM is poorly known (a diagonal R  is 
often used ignoring correlations between observation 
errors). In the case of an estimated observation ECM, 
estimation of analysis error covariance matrix can be 
calculated by Eq. 2: 

Pa = P f +P fHT (HP fHT +Re )!1

(HP fHT +R)(HP fHT +Re )!1HP f

! 2P fHT (HP fHT +Re )!1HP f 	  
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where Re  and  are the estimated and true 
observation ECM respectively. Other symbols are the 
same as in Eq. 1. 

3. Experiments on observation distribution 

3.1 Optimal observation distribution with fixed 
observation number 

The purpose of this experiment is to decide the 
observation location under the condition that only a fixed 
number of observations are allowed. This condition is 
reasonable because there is always a compromise 
between time and space sampling, that is, only a fixed 
number of observations can be obtained during the 
available period. Here a simple experiment is 
implemented to simulate this circumstance. The setting 
of this experiment is that there are 200 one-dimension 
state variables with same forecast error variance 1.0. 
Only two observations with error variance 1.0can be 
obtained. The error correlation functionis supposed to 
be Gaussian for both forecast and observation, as 
shown in Eq. 3. 
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wherex is distance between model grids or observations, 
and ris the correlation distance. 

The uncertainties of the analysis results are investigated 
by Eq. 1 to identify the optimal observation strategy. By 
summing the diagonal elements of , we obtain the 
total variance of analysis error. Because of the 
correlations between state variables and between 
observations, the total variance of analysis erroris a 
function of the distance between two observations, as 
shown in Fig. 1. In this case, two observations should 
be at least 10 points away to obtain the smallest total 
error variance. 

 

 

 
Fig.1 Total variance of analysis error as a function 
of distance between two observations. Correlation 
distance is 5 and the variance is 1 for both 
observation error and forecast error. It shows that 
the smallest variance can be obtained when the 
distance between observations is larger than 10. 

 

By changing the correlation distance of forecast error 
and observation error, the optimal distance between 
observations is changed as well. Figure 2 shows the 
optimal distance as a function of the correlation 
distances of both forecast and observation. When 
observation error correlation distance changes, and 
forecast error correlation distance remains the same, 
the optimal distance varies little. But if forecast error 
correlation distance changes, the optimal distance 
between observations is significantly affected. Figure 2 
indicates that the forecast error correlation distance is 
much more important than observation error correlation 
distance for deciding the optimal observation distance. 

The optimal distance between observations is also 
related to the variances of observation and forecast 
errors. Fig. 3 shows how the optimal observation 
distance varies for different variances of observation 
and forecast errors. We can tell that both observation 
and forecast error variances are important for 
determining the optimal observation distance. 

 
 
Fig. 3 Optimal observation distance as a function of 
variances of forecast error and observation error. The 
error correlation distance is set to be 5 for both 
observation error and forecast error. 
 

The reason why observation error correlation distance 
plays a more important role than forecast error 
correlation distance is that while the observed variables 
are updated by both forecast and observation, the 
unobserved variables are updated according to the 
forecast error correlation only. Additionally, variances of 
both observation and forecast errors are important 
because both variances affect the variances of error of 
the updated observed variables, and then the variance 
information spreads to the unobserved variables. 

For example, if only two radar beams are allowed, we 
want those two beams to be separate by a particular 
distance, which is determined by the error structures of 
the system, in order to have small analysis uncertainty. 

Pa

 
 
Fig.2 Optimal observation distance as a function of 
correlation distances of forecast error and 
observation error. The variance is set to be 1 for 
both observation error and forecast error. 
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And the optimal observation strategy depends largely on 
the forecast error correlation distance, but not on the 
observation error correlation distance. 

3.2Optimal number of observations 

More observations provide more information. Therefore, 
we may want as many observations as possible. For 
example, we could direct the radar to scan everywhere 
to get all the information that can be obtained. However, 
this scan strategy is optimal for radar assimilation 
system only when the error structure of forecast and 
observation are well estimated beforehand. Increasing 
information with unknown error structure may be 
detrimental to the forecast. When an ill estimated error 
covariance matrix is applied, the question that how 
many observations are needed is not easy to answer. 

The next experiment set the observation number to be 
80 or less, and other parameters are the same as 
experiment 3.1.  

First, if the assumption of well-estimated error 
covariance matrix is fulfilled, Fig. 4 shows that when 
more and more observations are assimilated, the total 
variance of analysis error is reduced. The optimal 
number of observations is 80, which means we want as 
many observations as possible. 

 

 

 
Fig.4 Total variance of analysis error as a function of 
observation number. Observation error covariance 
matrix is well estimated. Correlation distance is 5 and 
the variance is 1 for both observation error and 
forecast error. Smallest total variance corresponds to 
80 observations.  

 

 

Second, if a diagonal observation error covariance 
matrix is used, but the true observation errors have 
significant correlation,  is ill estimated. From Eq. 2, we 
can obtain the analysis error variances. Fig. 5 shows 
that in this case, 80 observations give larger analysis 
error variance than 40 observations. Therefore, reducing 
the number of observations is better due to the 

incomplete information about the observation error 
structure. 

 
 
Fig.5 Total variance of analysis error as a function of 
observation number. Observation error covariance 
matrix is ill estimated. Correlation distance is 5 and the 
variance is 1 for both observation error and forecast 
error. Smallest total variance corresponds to 40 
observations. 
 

This experiment shows that when the well estimated 
observation ECM is used, no data thinning is needed 
because more observations with precise error structures 
are always better for data assimilation. However, when 
the observation error correlation is difficult to estimate, 
there is advantage to do some thinning to the 
observations. Dropping some observations whose error 
structure is unknown is better than keeping all these 
observations. The number of removed observations 
depends on the error structures of forecast and 
observation. Therefore, if a diagonal observation ECM is 
applied in data assimilation system, removing some 
radar data from the data assimilation system will be 
beneficial for the analysis. 

3.3Non-uniform background error variance 

In reality, the forecast error structure cannot be the 
same for all the model grids. Therefore it is necessary to 
locate the observations according to different forecast 
error structures at different regions. In this experiment, 
100 state variables are used. The forecast error 
variance is equal to 1.2between x=1 and 50, and is 
equal to 1between x=51 and 100, as shown in Fig. 6. 
And only 7 observations are allowed. To reduce the 
uncertainty of the analysis, more observations are 
needed where the forecast error variance is larger. We 
need to determine how many observations should be 
placed between x=1 and 50, and how many 
observations between x=51 and 100. The optimal 
placement gives the smallest total variance of analysis 
error. Fig. 7 indicates that the optimal placement in this 
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experiment should be 5 observations between x=1 and 
50, and 2 observations between x=51 and 100. 

 

 

 
Fig.6 Forecast error variance at different 
locations. 

 

 

 
 
Fig.7 Total variance of analysis error as a function of the 
location of observations. Smallest total variance 
corresponds to 5 observations between x=1 and 50. 

Moreover, there exists a mathematical approach to 
identify the important regions where the observations 
will reduce the total variance of analysis error most 
significantly. For example, ensemble transform Kalman 
filter (ETKF) introduced by Bishop (2001) allows to 
identify the most important observation region. We will 
develop a comprehensive methodology for optimal 
scanning of the atmosphere to take advantage of future 
possibilities of scanning agility. 

4. Summary 

The above experiments try to find out the optimal 
quantity of observations and the optimal distance 
between adjacent observations. The experiments prove 
that if the observation error correlation is known exactly, 
more observations produce more precise data 
assimilation result for sure. But if the observation error 
correlation is not known exactly, and is assumed to be 

zero, as in most realistic cases, there is an optimal 
quantity of observation that generates the analysis with 
minimum total error variance. If the amount of 
observations is fixed, there is an optimal distance 
between adjacent observations, which depends more on 
the correlation distance of forecast errors than that of 
observation errors. When the forecast error variance 
varies at different locations, there exists an optimal 
observation distribution, which depends on the error 
structures of the forecast and observation. 

The idea of these simple experiments will be applied on 
the radar data assimilation system in the future. It is 
expected that the locations and the amount of 
observations will significantly affect the analysis 
uncertainty. However, the smallest total variance of 
analysis error, or an analysis with smallest uncertainty, 
cannot guaranty the forecast to be precise. In the future 
research, wewill consider the effect of targeted 
observation on the forecast. 
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