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1 INTRODUCTION

Rainfall is a physical process highly variable in
time and space, which makes its quantification dif-
ficult especially because of the problem of the spa-
tial representativity (point, volume) of the measure-
ments. While investigations on the spatial variabil-
ity of the raindrop size distribution (DSD) are be-
coming more and more common in the recent years
(e.g., Lee et al., 2009; Tokay and Bashor, 2010; Tapi-
ador et al., 2010), most of the experimental setups
did not allow to fully characterize the spatial vari-
ability of the DSD for distance lags below 1 km
(which is the typical size of a weather radar pixel).
This work investigate the variability of the DSD at
the radar subgrid scale (∼1 km2) based on an exper-
imental approach. Section 2 presents the considered
data set and the methods while the quantification of
the spatial structure of the DSD is provided in Sec-
tion 3. Finally, Section 4 draws some conclusions.

2 DATASET AND METHODS

2.1 Experimental setup

A network of 16 optical disdrometers PARSIVEL
(OTT) has been deployed over a typical weather
radar pixel (∼1×1 km2) in Lausanne, Switzerland.
16 sampling locations provide a total of 120 pairs
of points. According to the configuration of the
network, the interdistances between pairs of instru-
ments is ranging from 80 m to about 800 m. The net-
work is presented in details in Jaffrain et al. (2011).

The network has collected DSD spectra at a 30-s
temporal resolution for about 16 months. 36 rainfall
events have been selected and classified in different
types according to visual inspection of radar rain-
rate maps. 9, 19 and 8 rainfall events have been
identified as convective, transitional and frontal re-
spectively. It corresponds to about 643, 3665 and
839 rainy minutes respectively. Statistics character-
izing each group of rainfall are presented in Table 1.
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2.2 Methods

Similarly to Jaffrain and Berne (2011), a filtering
process is applied on the data prior to the analy-
ses. For consistency and to limit the influence of
very weak rainfall, all the stations must record a
rain rate higher than 0.1 mm h-1. To filter out
possible non natural drops, raindrops outside ±60%
around the terminal fall speed-diameter relationship
are removed (see Kruger and Krajewski, 2002; Jaf-
frain and Berne, 2011).
Using a statistical approach, the raindrop size dis-

tribution can be seen as the product between the
total concentration of drops Nt and a probability
density function f(D). A commonly used statisti-
cal descriptor to characterize the first order moment
of f(D) is the mass-weighted diameter Dm. As a
result, information on the variability of these two
quantities will provide an estimation of the variabil-
ity of the DSD. Moreover, analyses have been con-
ducted as well for different quantities related to the
DSD but to keep this paper short, only the rain rate
R, which is of primary importance for many envi-
ronmental applications, is presented hereafter.
Because the mean is involved, classical tools to

characterize the spatial structure (e.r., autocorrela-
tion, variograms) are well suited for Gaussian-like
distributed random fields. Consequently, the loga-
rithm transform of the different quantities is consid-
ered as this leads to more symmetrical distributions.
In the following, V (x) is defined as a stationary

random function which has a lognormal distribution.
Defining Y (x) = ln[V (x)], the means mY and mV ,
the variances σ2

Y and σ2
V and the covariances CY (h)

and CV (h) of Y and V are related as follows (Chilès
and Delfiner, 1999, p. 103):

mV = exp

(

mY +
1

2
σ2
Y

)

(1)

σ2
V = m2

V

[

exp
(

σ2
Y

)

− 1
]

(2)

CV (h) = m2
V {exp [CY (h)]− 1} (3)

where mY and σY are the mean and the standard
deviation of the population of Y values.
The (semi)variogram is a key tool used in Geo-

statistics in order to investigate and quantify the
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Table 1: Statistics of the three different groups of rainfall events at a 60-s temporal resolution.
Convective Transitional Frontal

Number of events 9 19 8
Number of rainy minutes 643 3665 839
Rain amount averaged over the network [mm] 32.6 113.7 10.5

Mean of the averaged rain rate R [mm h-1] 3.05 1.86 0.75

Q10%(R) [mm h-1] 0.50 0.33 0.25

Q50%(R) [mm h-1] 2.42 1.24 0.64

Q90%(R) [mm h-1] 5.98 4.12 1.33

spatial (or temporal) structure of a random function
V (x) (Matheron, 1965). It is expressed as:

γ(h) =
1

2
E
{

[V (x+ h)− V (x)]2
}

(4)

where E denotes the expectation, x is a position vec-
tor and h is a distance (or time) separation vector.
The classical widely used sample variogram esti-

mator, sometimes called ”Matheron” estimator, is
expressed as (Chilès and Delfiner, 1999):

γ̂(h) =
1

2Nh

∑

xβ−xα≃h

{

[v(xβ)− v(xα)]
2
}

(5)

where Nh is the number of pairs (xα,xβ) separated
by a distance approximately equal to h. As the mean
is involved, the quality of γ̂(h) estimates is influ-
enced by the possible skewness of the distribution
of the increment values. A more robust estimator
based on the quantile variogram γ̂p(h), as defined
by Armstrong and Delfiner (1980), can be used:

γ̂p(h) = Qp

xβ−xα≃h

{

1

2
[v(xβ)− v(xα)]

2

}

(6)

where Qp denotes the quantile with a probability
p ∈]0, 1[. Quantile variograms are all proportional
to the classical variogram with proportionality fac-
tors being the quantiles of the distribution of a chi-
square variable with one degree freedom χ2

1 (Chilès
and Delfiner, 1999) when V is bi-normal. For ro-
bustness, the median variogram estimator is used to
estimate the variogram according to:

γ̂(h) =
γ̂0.50(h)

Q0.50(χ2
1)

(7)

where Q0.50(χ
2
1) is the median of a χ2

1 distribution
which is equal to 0.455.
The next step consists in back-transforming into

linear space the spatial structure quantified in the

logarithm space. For a stationary random func-
tion V (x), the variogram γV (h) and the covariance
CV (h) at a distance lag h are linked in the following
way:

γV (h) = σ2
V − CV (h) (8)

where σV is the standard deviation of V . From
Eq (8), the covariance of Y (x), with Y (x) =
ln[V (x)], can be estimated from γY at each distance
lag h. The next step consists in calculating the co-
variance of V (x) from CY estimates using Eq (3).
Finally, γV is derived from CV estimates for each
distance lag h.

3 SPATIAL STRUCTURE

In the following, the average isotropic variogram
for each rainfall group and each quantity of interest
is estimated. As the network consists of 16 sampling
location, 120 pairs of points are available at each
time step.

3.1 Averaged spatial structure

Isotropic variograms of the different quantities of
interest (Nt, Dm and R) have been estimated for the
different types of rainfall (convective, transitional
and frontal). Figure 1 presents the sample variogram
of Nt for each rainfall type at a 60-s temporal reso-
lution. It is clear that the network is not extended
enough to catch the range of the variogram (corre-
sponding to the decorrelation distance). But it also
clearly shows that there is a spatial structure in the
DSD field (i.e., that the field is organized and not
randomly varying) even at such a small scale (inter-
distances below 800 m). In terms of rainfall types,
the variability observed over the monitored area is
larger for convective events than for transitional and
for frontal ones. For example, for an interdistance
of about h =225 m, the variogram value is about
2384.5, 1181.5 and 787.8 m-6 for convective, tran-
sitional and frontal type rain events respectively at
a 60-s temporal resolution. This corresponds to an
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average difference of about 48.8, 34.4 and 28 drops
per m-3 between two locations 225 m away.
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Figure 1: Sample variogram and fitted linear vari-
ogram model for Nt for the three rainfall types at a
60-s temporal resolution. The units associated with
γ(h) are m-6. The X axis shows the interdistance
classes (m).

To ease the comparison between rainfall events of
different types, a variogrammodel was fitted on each
empiral variogram. Because the range is not reached
at the scale of the network, a linear variogram model
is used. The high coefficients of determination (R2)
confirm the goodness of fit of this linear model to
the experimental variogram values. For instance,
R2 is about 0.91, 0.90 and 0.74 for rain rate at a
60-s temporal resolution for convective, transitional
and frontal rain events respectively. The linear mod-
els are considered valid up to 800 m and the au-
thors recommend to not extrapolate these models
at much larger interdistance classes. It has to be
noticed that variogram models have been adjusted
using the gstat package (Pebesma, 2004). Each lin-
ear model is characterized by two parameters: the
nugget and the slope. The slope parameter indicates
how fast is varying Z(x) with the distance lag. The
nugget quantifies the variability at very short dis-
tance lags (with respect to the minimum distance
lag of the network). The nugget effect is explained
by the possible variability of the considered process
at interdistances smaller than the minimum inter-
distance in the network (all micro-scale variability,
below 80 m in our case) and/or measurement errors.
The linear model fitted on each sample variogram is
also plotted in Figure 1. Figures 2 and 3 show the
same information for Dm and R.
Figures 1-3 show that there is a spatial struc-

ture at this scale for all the quantities of interest.
Moreover and as intuitively expected, the nugget
and slope parameters are increasing from frontal to
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Figure 2: Same as Figure 1 for Dm. The units asso-
ciated with γ(h) are mm2.
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Figure 3: Same as Figure 1 for R. The units associ-
ated with γ(h) are mm2 h-2.

transitional to convective events. For instance, for
Nt, the nugget (slope) of the transitional and frontal
group represents about 74% (34%) and 54% (15%)
of the one estimated for the convective group. These
percentages for Dm exhibits similar values while the
differences between convective and frontal param-
eters for R are larger. For example, the nugget
(slope) parameter for frontal events represents about
4% (1%) the one for convective events. The nugget
explains a larger part of the total variability (inter-
preted as a stronger influence of the measurement
error) for frontal than for transitional and convec-
tive events.

3.2 Influence of the temporal resolution

The variogram has been estimated and a linear
model has been fitted at 7 temporal resolutions rang-
ing from 60 s to 1 h. For illustration, the evolution
of the fitted nugget and slope values is presented in
Figures 4 for Nt. Independently of the quantity of
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Figure 4: Influence of the temporal resolution on
the nugget (top) and slope (bottom) parameters of
the linear variogram model for the different types of
rainfall.

interest, there is a strong decrease in the nugget and
slope values until a temporal resolution of 600 s, fol-
lowed by a much more limited decrease. The slope
of the variogram decreases with decreasing tempo-
ral resolution until it reaches zero (or very close to
zero) at temporal resolution of 30 min independently
of the type of rainfall. This shows that for large tem-
poral resolutions, i.e., 30 min and above, the sample
variogram is basically flat and the fitted variogram
model is a pure nugget model (slope∼0) which in-
dicates that the natural variability of the DSD (if
any) is below the noise level in the observations. In
other words, the integration in time of the DSD mea-
surements tends to remove the variability existing at
high temporal resolution, and the remaining (lim-
ited) variability is solely due to measurement errors.

4 CONCLUSION

A network of 16 disdrometers has been deployed
over a typical weather radar pixel in Lausanne,
Switzerland. A selection of 36 rainfall events, clas-
sified according to their type (convective, frontal,

transitional), is considered in the present analysis.
A geostatistical approach is considered in order to
quantify the spatial structure of the raindrop size
distribution (DSD). Isotropic variograms have been
calculated foreach type fo rainfall for Nt, Dm and
R. Overall, it shows that there is a spatial structure
of the DSD, i.e., the fields are organized and not
randomly distributed, even at 1 km2 scale. More-
over, the experimental variograms highlight that the
range (or decorrelation distance) is not reached at
the scale of the network. Consequently a linear var-
iogram model is fitted on each experimental vari-
ogram and is considered as valid at least at the scale
of the network.
The temporal resolution has a strong impact on

the evolution of the nugget and the slope of the lin-
ear models. It shows that for increasing time steps,
the observed variability is decreasing. At a temporal
resolution of 30min and above, the observed variabil-
ity is mainly dominated by the measurement errors.
To illustrate possible applications of these results,

it is possible to quantify the error associated when
using point measurements extended at the pixel
scale (and vice-versa). Moreover, the influence of
the observed variability of the DSD on radar power
laws and radar rain-rate estimations can be quanti-
fied (see for instance poster P.135: ”Influence of the

small-scale variability of the raindrop size distribu-

tion on radar power laws.”).
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