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1. Introduction

In addition to Doppler measurements, applica-
tion of polarimetry to meteorological observa-
tions is one of the most important advance-
ments in weather radar. Typical polarimet-
ric measurements include differential reflectiv-
ity, co-polar correlation coefficient, differential
phase, and linear depolarization ratio, which
contain information integrated over the radar
resolution volume. However, the size of radar
resolution volume can be too large. Spectral
polarimetry is to combine Doppler and polari-
metric measurements so that the the distribu-
tion of polarimetric variables as a function of ra-
dial velocity within the radar resolution volume.
Spectral polarimetry has been used for improv-
ing data quality, especially in clutter identifi-
cation and suppression. For example, Bach-
mann and Zrnić (2007) applied spectral po-
larimetric variables to filter out the contamina-
tion from biological clutter and consequently,
better wind estimates from clear air are ob-
tained. The spectral co-polar correlation co-
efficient and the texture of spectral differential
reflectivity and spectral differential phase were
used to discriminate different types of clutter
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using a fuzzy logic inference system for im-
proved estimation of Doppler and polarimetric
moments (Moisseev and Chandrasekar 2009;
Moisseev et al. 2010). In addition to clut-
ter mitigation, a technique of velocity dealias-
ing for alternative transmission was developed
by using spectral differential phase (Unal and
Moisseev 2004). Moreover, spectral polarime-
try has been used to obtain microphysical in-
formation of precipitation as well as environ-
mental parameters such as background wind
and turbulence within the radar resolution vol-
ume (Yanovsky et al. 2005; Spek et al. 2008;
Dufournet 2010). The hydrometeor classifica-
tion is carried out in the spectral domain us-
ing all the three spectral polarimetric variables
(Moisseev and Chandrasekar 2007; Moisseev
et al. 2008). Although spectral polarimetry has
shown promising results, the quality of these
spectral polarimetric estimators has not been
studied comprehensively. In this work, the
statistical error of spectral differential reflectiv-
ity and spectral co-polar correlation coefficient
were derived using perturbation method and
verified using simulations.

This paper is organized as follows. In Sec-
tion 2, the estimation of spectral differential re-
flectivity and spectral co-polar correlation coef-
ficient is defined. In Section b, the bias and
SD of these two estimators are derived and dis-
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cussed. The derived statistical errors are sub-
sequently verified using simulation in Section 3.
Finally, a summary and conclusions are pre-
sented in section 4.

2. Statistical analysis of spectral
polarimetric variables

a. Estimation of spectral polarimetric variables

Now let’s examine how to estimate spectral dif-
ferential reflectivity and spectral co-polar corre-
lation coefficient from a finite number of com-
plex radar samples. The first step is to perform
the discrete Fourier transform (DFT) of radar
signals from both channels using the following
equation.

Zj(f) =

M−1∑
m=0

d(m)Vj(m)e−j2πmf , j = H or V

(1)
where d(m) is the data window for M com-
plex samples from either H or V channels. The
second step is to estimate the auto and cross
spectra using the following equations.

Ŝj(f) =
|Zj(f)|2

M
−Nj , j = H or V (2)

ŜX(f) =
|ZH(f)Z∗

V (f)|
M

(3)

where Ŝj(f) is the estimated Doppler spectrum
from either H or V channel, ŜX(f) is the es-
timated cross spectrum, and Nj is the noise
level in H or V channel and was assumed to be
known. It was further assumed that the white
noise from H and V are uncorrelated. In order
to reduce the variance in the spectrum estima-
tor (Doviak and Zrnić 1993), K spectra were
averaged in step 3.

Si(f) =
1

K

K∑
k=1

Ŝi,k(f), i = H, V, or X (4)

where Ŝki (f), i =H, V or X is the auto or cross
spectra estimated using (2) or (3). The last
step is to estimate spectral differential reflectiv-
ity and spectral correlation coefficient from av-
eraged spectra using the following equations.

sẐdr(f) =
SH(f)

SV (f)
(5)

sρ̂(f) =
|SX(f)|√
SH(f)SV (f)

(6)

b. Statistical quality of spectral polarimetric
variables

The perturbation method was used in this work,
where each estimator is modeled by a deter-
ministic true value and a small and random per-
turbation term. For example, the spectrum es-
timator has the form of Ŝi = Si + δŜi, where
Si is the true spectrum and the perturbation
δŜi � Si. Note that hereafter the dependence
of f for variables in spectrum domain is ne-
glected for simplicity. The bias and variance
of spectra estimated using (2) or (3) have been
provided in several literatures (e.g., Bringi and
Chandrasekar 2001; Doviak and Zrnić 1993).
It is also shown that the bias of auto and cross
spectra can be reduced by a larger number of
samples. In this work, it was assumed that
a sufficient number of samples are used and
therefore, the spectrum estimators are unbi-
ased. This assumption will be investigated in
more detail in section c. Subsequently, the
average spectra (Si = Si + δSi) are also un-
biased. Specifically, the following assumption
was used for the unbiased spectrum estimator.

〈δŜi〉
Si

=
〈δSi〉
Si

= 0, i = H, V, and X (7)

where 〈·〉 is the expected value.

The estimator of spectral differential reflec-
tivity is represented in (8) by using the pertur-
bation method and can be approximated by (9).
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sẐdr = sZdr + δsẐdr (8)

≈ SH
SV

+
SH
SV

(
δSH
SH
− δSV

SV
−

δSHδSV
SHSV

+
δS

2
V

S2
V

) (9)

where (9) was obtained by substituting Si =
Si(1 + δSi/Si) into (5), taking out the term
of SH/SV and performing binomial expansion
of the denominator. Note that the terms with
order higher than the second order were ne-
glected because of δSi/Si � 1. Subsequently,
it can be shown that the bias of sẐdr, b(sẐdr) =
〈δsẐdr〉 and the variance of sẐdr, var(sẐdr) =
〈δsẐ2

dr〉. The normalized bias and variance of
spectral differential reflectivity can then be de-
rived in the following forms after applying (7)
and considering up to the second order terms.

b(sẐdr)
sZdr

= −〈δSHδSV 〉
SHSV

+
〈δS2

V 〉
S2
V

(10)

var(sẐdr)
sZ2

dr

=
〈δS2

H〉
S2
H

+
〈δS2

V 〉
S2
V

−

2
〈δSHδSV 〉
SHSV

(11)

where sZdr ≡ SH(f)
SV (f) is the true and determinis-

tic spectral differential reflectivity. The bias and
variance of spectral differential reflectivity in dB
scale are shown in the following equations.

b(sẐDR) =
10

K ln 10
{1− sρ2 +

2sSNRV + 1

sSNR2
V

} (12)

var(sẐDR) =
1

K
(
10

ln 10
)2{2(1− sρ2) +

2sSNRH + 1

sSNR2
H

+

2sSNRV + 1

sSNR2
V

} (13)

where sρ is the true and deterministic spectral
co-polar correlation coefficient and sSNRj ≡

Sj/Nj is the spectral SNR in linear scale for the
j channel, j = H or V.

Similar procedure was applied to spectral
co-polar correlation coefficient estimator and
the following equations were obtained.

sρ̂ = sρ+ δsρ̂

≈ |SX |√
SHSV

+
|SX |√
SHSV

{−1

2

δSH
SH
− 1

2

δSV
SV

+

3

8

δS
2
H

S2
H

+
3

8

δS
2
V

S2
V

+
δSHδSV
4SHSV

+ <(δSX
SX

)

−1

2
<(δSX

SX
)
δSH
SH
− 1

2
<(δSX

SX
)
δSV
SV

+

1

2
|δSX
SX
|2 − 1

2
<(δSX

SX
)2} (14)

where <(·) denoted the real part of a complex
variable. The normalized bias and variance of
spectral co-polar correlation coefficient can be
approximated using the following equations.

b(sρ̂)
sρ

=
3〈δS2

H〉
8S2

H

+
3〈δS2

V 〉
8S2

V

+
〈δŜHδSV 〉
4SHSV

−1

2
〈<(δSX

SX
)
δSH
SH
〉

−1

2
〈<(δSX

SX
)
δSV
SV
〉+ 1

2
〈|δSX
SX
|2〉

−1

2
〈<2(

δSX
SX

)〉 (15)

var(sρ̂)
sρ2

=
1

4

〈δS2
H〉

S2
H

+
1

4

〈δS2
V 〉

S2
V

+ 〈<2(
δSX
SX

)〉

−〈<(δSX
SX

)
δSH
SH
〉 − 〈<(δSX

SX
)
δSV
SV
〉+

1

2

〈δSHδSV 〉
SHSV

(16)

Consequently, the following bias and variance
of spectral correlation coefficient can be ob-
tained.
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b(sρ̂)
sρ

=
1

K
{(1− sρ

2)2

4sρ2
+

2sSNRH + 3

8sSNR2
H

+

2sSNRV + 3

8sSNR2
V

+
sSNRH + sSNRV + 1

4sρ2 sSNRH sSNRV
} (17)

var(sρ̂)
sρ2

=
1

K
{(1− sρ

2)2

2sρ2
+

1− 2sSNRH
4sSNR2

H

+
1− 2sSNRV
4sSNR2

V

+
sSNRH + sSNRV + 1

2sρ2 sSNRH sSNRV
+} (18)

c. Discussions

Before investigating the dependence of the sta-
tistical errors on different parameters, we need
to determine the condition when the assump-
tion of unbiased spectrum estimators in (7) is
approximately valid. It is known that the esti-
mated spectrum is the convolution of true spec-
trum and window function. The window func-
tion is defined by the Fourier transform of the
lag window. In other words, the spectrum bias
can be reduced by increasing the number of
samples for a given spectrum and the type of
lag window. Theoretically, the spectrum esti-
mators using (2) or (3) are asymptotically unbi-
ased (Papoulis and Pillai 2002). In this work,
it was assumed that the spectrum bias can be
neglected if δŜi/Si <= 0.2. It was further re-
quired that a sufficient number of samples are
used so that the condition of unbiased estima-
tor is met for spectrum from its peak to 30 dB
down from the peak. In other words, the min-
imum number of samples to achieve the re-
quirements can be determined by increasing
the number of samples until the requirements
are met. Fig. 1 presents the minimum number
of samples as a function of normalized spec-
trum width for rectangular, Chebyshev and von
Hann data windows. It is interesting to point
out that the rectangular data window demands
the largest number of samples for a given spec-
trum width. This is because the window func-
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Figure 1: The minimum number of samples re-
quired to approximate the assumption of unbi-
ased spectrum estimators is shown as a func-
tion of normalized spectrum width for three
data windows. The results from rectangular,
Chebyshev and von Hann data windows are
denoted by dotted, dashed, and solid lines, re-
spectively. The horizontal solid line depicts 64
samples.

tion for rectangular data window has the high-
est sidelobes, which biases the spectrum most.
On the other hand, Chebyshev and von Hann
data windows produce similar results, while von
Hann data window is slightly better. It can be
observed that with 64 samples, the require-
ments for unbiased assumption is fulfilled for
normalized spectrum width larger than 0.05.
Hereafter, von Hann data window with 64 or
more samples is considered.

It is shown that the bias and SD of the
two spectral polarimetric estimators depend on
the spectral SNRs, true spectral co-polar cor-
relation coefficient, and the number of spec-
trum average. In this work, we assumed the
noise level from the two channels are equal
and known. Thus, the spectral SNR for H
channel can be represented by sSNRH =
sSNRV sZdr.
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3. Verification of statistical er-
rors using simulations

a. Description of simulation method

In order to further verify the statistical error
of spectral polarimetric variables derived in
section b, a simulation of time series signals
from dual polarimetric weather radar was de-
veloped based on Zrnić (1975). In simula-
tion, a model spectrum for V-channel (SV (m)),
spectral differential reflectivity (sZDR(m)), and
spectral co-polar correlation coefficient (sρ(m))
were given for M velocity bins. First of all, ran-
dom fluctuations were added to the model V-
channel spectrum based on the equation (7)
in Zrnić (1975). This process was repeated K
times for spectrum averaging as shown in the
following equation.

ZV (k,m) =
√
−SV (m) lnu(k,m)ejθ(k,m) (19)

where k = 1, 2, · · · K, u(k,m) is an indepen-
dent random variable uniformly distributed be-
tween 0 and 1 and θ(k,m) is also an uniform
random variable but has values between −π
and π. Note that ZV (k,m) is the DFT of the
time series samples for K independent spectra
as defined in (1).

The next step was to generate H-channel
spectra ZH(k,m) with the given spectral dif-
ferential reflectivity and spectral correlation
coefficient. This was done by considering
ZV (k,mi) at a velocity bin mi as an random se-
quence of K samples. The following equation
was used to generate the random sequence
of ZH(k,mi), which has a mean amplitude
of ZV (k,mi)

√
sZdr(mi) and correlation coeffi-

cient of sρ(mi) with ZV (k,mi). This process
was repeated M times for all the velocity bins.

ZH(k,m) =
√
sZdr(m)[sρ(m)ZV (k,m) +√
1− sρ2(m)R(k,m)] (20)

wherem = 1, 2, · · · ,M , andR(k,m) was gen-
erated using (19) but with independent u(k,m)

and θ(k,m). The time series signals for H
and V channels for each k were generated by
the inverse Fourier transform of (20) and (19),
respectively. Finally, independent noise se-
quences were added to the two time series sig-
nals individually based on the desirable SNR.

b. Simulation Results

In this work, the spectral polarimetric variables
and the derived statistical errors were demon-
strated and verified using three cases. For all
the three case, the V-channel Doppler spec-
trum was modeled by a Gaussian spectrum
with mean velocity of -5 m s−1and spectrum
width of 4 m s−1for a maximum unambiguity
velocity of 25 m s−1. The spectral co-polar cor-
relation coefficient used in the model was uni-
form over all the velocities and has values of
0.8, 0.9, and 0.95 for Case I, II, and III, respec-
tively. The modeled spectral differential reflec-
tivity is a constant of 0 dB for Case I, has an
exponential variation for Case II, and is a linear
function for Case III. For all the three cases,
the number of samples is 64 and the number
of spectrum averages is 20. Moreover, the the-
oretical SDs for spectral differential reflectiv-
ity and spectral co-polar correlation coefficient
can be calculated using (13) and (18), respec-
tively. The modeled spectral polarimetric vari-
ables are their associated theoretical SDs are
denoted by dotted, dashed, and solid lines for
the three cases, respectively, in Fig. 2. For
each case, 100 realizations of time series sig-
nals for both channels were generated using
a constant SNR of 30 dB for V channel. Be-
fore investigating the statistical performance of
the spectral polarimetric estimators, let’s first
verify whether the simulated time series sig-
nals can produce the desirable conventional
polarimetric variables. The differential reflec-
tivity of 0, 1.112, and 3.016 dB are expected
for Case I, II, and III, respectively. The ex-
pected co-polar correlation coefficient is equal
to its constant spectral correlation coefficient.
At the same time, the differential reflectivity and
correlation coefficient can be estimated using
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Figure 2: Statistics of the spectral differential
reflectivity and spectral correlation coefficient
are shown on the left and right columns, re-
spectively, for the three cases. The mean of
both estimators are shown on the top panels
and the SDs are presented on the bottom pan-
els. Both modeled spectral variables and the-
oretical SD for Case I, II, and III are denoted
by dotted, dashed, and solid lines, respectively.
The mean and SD calculated from the simula-
tion are denoted by crosses, circles, and dia-
monds for the three cases.

simulated time series signals (Bringi and Chan-
drasekar 2001). The mean of estimated differ-
ential reflectivities obtained for the three cases
is -0.007, 1.119, and 3.026 dB, and the mean of
the estimated co-polar correlation coefficients
is 0.799, 0.900, and 0.949. The good agree-
ment between the expected and estimated po-
larimetric variables verifies the relationship and
suggests the feasibility of proposed simulation.

For each realization, the spectral polari-
metric variables were estimated using (5) and
(6) with von Hann data window. Note that
the spectral polarimetric variables are not de-
fined for spectral SNR less than 0 dB. The
mean of estimated spectral differential reflectiv-
ity and spectral correlation coefficient are pre-
sented on the top left and right panels, respec-
tively. Additionally, the SD of the two estima-
tors are shown on the lower two panels. It is

evident that the mean of both spectral differ-
ential reflectivity and spectral correlation coef-
ficient agree well with the model. The bias of
spectral correlation coefficient becomes iden-
tifiable only toward both tails of the spectrum,
where spectral SNR is evidently low. The bias
of spectral differential reflectivity is also present
at low spectral SNR, but it is difficult to ob-
serve due to its relatively small value for these
cases. Moreover, the theoretical SDs for the
two spectral polarimetric estimators are verified
using simulation as shown in the bottom two
panels. The SD of both estimators is not af-
fected much by the modeled spectral differen-
tial reflectivity. This is manifested by a relatively
constant values of SDs between approximately
-10 m s−1and 8 m s−1for Case II and III, de-
spite the model sZDR varies within that region.
Moreover, the effect of modeled spectral cor-
relation coefficient on SD of both spectral po-
larimetric variables is evident for a given K at
large spectral SNR.

An example of estimated spectra and spec-
tral polarimetric variables from one realization
is shown in Fig. 3. The estimated average
spectra for both H and V channels for the three
cases are shown on the top three panels from
left to right, respectively. The noise level is at
approximately -50 dB. The estimated spectral
differential reflectivity and spectral correlation
coefficient are denoted by dashed lines in the
middle and bottom panels, respectively. The
model values are denoted by solid lines. Note
that all the estimates associated with sSNR ≥
0 are denoted by gray dashed lines, which gen-
erally follow the model values with increasing
fluctuations as sSNRV decreases. Thus, it
is important to obtain some idea about which
portion of the estimates meets the error re-
quirements. Moreover, the minimum spectral
SNR that meets the desirable bias and SD can
be determined given K, sZDR, and sρ. Here,
K = 20 has been set. As discussed previously,
the impact of spectral differential reflectivity on
statistical error is limited. Thus, the spectral dif-
ferential reflectivity of 0 dB is used for all the
three cases. Additionally, the estimated spec-
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Figure 3: Examples of spectral polarimetric variables are shown for the three cases from left to
right columns, respectively. The average spectra from H and V channels are denoted by solid and
dashed lines, respectively, on the top row. The horizontal dotted lines depicted the spectral SNR
threshold to meet required accuracy and precision. The estimated and modeled spectral differ-
ential reflectivity and spectral correlation coefficient are shown in the middle and bottom panels,
respectively. The modeled values are denoted by solid line, while the estimates are depicted using
dashed lines. The darker dashed lines denote the region of estimates that meet the requirement.

tral correlation coefficient averaged over the re-
gion where starts from the peak of the spec-
trum to 20 dB below the peak was used to ap-
proximate the true spectral co-polar correlation
coefficient. As an example, we requested the
maximum bias and SD of spectral differential
reflectivity to be 0.08 dB and 0.85 dB, respec-
tively. Additionally, the maximum bias of 0.3%
and maximum SD of 8% were requested for
the normalized spectral correlation coefficient.
The resulted spectral SNR thresholds for the
three cases are denoted by horizontal dotted
lines on the top panels. The estimated spec-
tral differential reflectivity and spectral correla-
tion coefficient that meet the requirements are
highlighted by black dashed lines. The adaptive
threshold for spectral SNR can help to iden-
tify the region of spectral polarimetric variables
with desirable data accuracy and precision.

4. Summary and conclusions

In this work, the estimators for spectral differ-
ential reflectivity and spectral cross-correlation
coefficient were defined based on averaged
auto and cross spectra. The bias and SD of
the two spectral polarimetric variables were de-
rived using perturbation method. These sta-
tistical errors have similar forms to those from
polarimetric variables and decrease as the in-
creasing spectral SNR. Moreover, the num-
ber of spectrum averages and spectral co-
polar correlation coefficient play a significant
role in these errors. These derived statistics
can also used to determine the minimum num-
ber of spectrum averages in order to achieve
desirable requirements of the statistical errors.
One of the limiting factors for the application
of spectral polarimetry to operational observa-
tions could be the requirement of a relatively
long time sequence (M×K) to achieve reason-
able frequency resolution and statistical quality.
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In this work, we assumed that M is sufficiently
large so spectrum estimators are unbiased. To
effectively increase the number of spectrum av-
erages, a combination of time and range aver-
aging could be used. Another possibility is to
apply overlapped data windows so that the fre-
quency resolution is maintained, while the data
quality is compromised.

These derived statistical errors were fur-
ther verified using simulations, where the time
series signals for both H and V channels
were generated based on modeled spectral po-
larimetric variables and regular SNR. Three
cases with different values of spectral co-polar
correlation coefficient and three variations of
spectral differential reflectivities were simu-
lated. The results demonstrate that not only the
model spectral differential reflectivity and spec-
tral co-polar correlation coefficient can be re-
constructed, but also the bias and SD obtained
from simulations are consistent with the theo-
retical derivations.
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density of polarimetric variables separating
biological scatterers in the VAD display. J. At-
mos. Oceanic Technol., 24, 1185–1198.

Bringi, V. N. and V. Chandrasekar, 2001: Po-
larimetric Doppler Weather Radar Princi-
ples and Applications. Cambridge University
Press, Cambridge, UK, 636 pp.

Doviak, R. J. and D. S. Zrnić, 1993: Doppler
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