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1. INTRODUCTION 
Flash flood forecasting is one of the most 

important challenges in hydrological sciences 
nowadays. Providing alerts with an adequate 
anticipation time on the occurrence of flash flood 
events mitigates its impact and brings enormous 
social and economical benefits. Mediterranean 
catchments are especially vulnerable to the 
occurrence of flash flood events, due to the steep 
slopes and the considerable volume of runoff draining 
along the impermeable surface of the catchment 
(Drobot and Parker, 2007; Sempere-Torres, 2007). 

In this research paper, a flash flood modeling 
system implemented in a Mediterranean river basin is 
presented. Radar precipitation estimation along with 
hydrological modeling techniques are implemented 
within the system for simulating the runoff generation 
and routing processes occurring in the catchment. 

However, there exists an uncertainty related with 
the estimation of radar precipitation (Zawadzki, 1984) 
and from model calibration (Beven, 2006). Such 
uncertainty is propagated to the resulting discharge 
simulations. 

The aim of this research paper is to propose a 
methodology to analyze the propagation of uncertainty 
occurring at the different processes of the modeling 
system. For this purpose, a Monte Carlo simulation 
approach is used to consider the uncertainty arising 
from rainfall and model parameter estimation. 

2. STUDY AREA AND DATA SETS 
 The study area is the Llobregat basin, with an 

area of 4948 km2 located in the region of Catalunya, in 
the North-East of Spain. The river has its source in the 
Pyrenees Mountains at 1295 m.a.s.l, draining in south 
direction up to the Mediterranean sea at the town of 
Prat de Llobregat.  

A network of weather radars operated by the 
Catalan meteorological service covers the whole 
domain of the catchment. It is equipped with a dense 
raingauge and streamgauge network, providing real-
time information of hydrometeorological data. 

The average annual rainfall over the catchment 
is about 670 mm, measured runoff is about 140 mm, 
potential evapotranspiration is about 750 mm and 
actual evapotranspiration is about 530 mm (ACA, 

2002). The discharge regime is affected by the effect 
of three reservoirs located inside the catchment. 

For the purpose of this study, a smaller subbasin, 
the Anoia river catchment (with a surface of 730 km2) 
has been selected. 

 
Figure 1: The study area including the weather radar, 
raingauges and streamgauges location. 

Five rainfall-runoff events have been selected to 
perform this study. Table 1 shows the characteristics 
of these events. A window of 120 hours is considered 
for all the events. Four of them have been selected for 
the calibration process (10 June 2000, 8 October 
2002, 11 September 2006, 9 October 2010) and one 
has been considered for validation (2 April 2007). 
Table 1: Characteristics of the flow events used in this study. 
Validation event is marked with * 

Date Peak flow 
[m3s-1] 

Mean areal  
rainfall [mm] 

10/06/2000 95 122 
08/10/2002 62 64 
11/09/2006 65 55 
02/04/2007* 38 79 
09/10/2010 140 65 

3. IMPLEMENTATION 

3.1. The distributed hydrological model DiCHiTop 

The distributed hydrological model DiCHiTop 
(Corral, 2004) is applied in this work. This model 
differentiates the runoff production processes in rural 
and urban areas. For the rural areas, an adaptation of 
the loss function of Topmodel (Beven, 1979) is 
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considered. The runoff generation in urban areas is 
analyzed using the loss function of SCS model 
(Mockus, 1959). The runoff propagation is modeled 
using a simplified Muskingum scheme (Szymkiewicz, 
2002) that differentiates the parameterization of flow 
velocity in hillslope and river cells. 

DiCHitop model has been used in the past to 
study the hydrological behavior of Mediterranean 
catchments. Recently, the model has been adapted 
into an operational context as the basis for the GenHi 
platform, an operational flash flood forecasting system 
implemented in the Catalan Water Agency (Corral et 
al., 2009).  

So far, all these implementations of the model 
have been developed in a deterministic framework. In 
this research, an attempt to consider the propagation 
of the uncertainty affecting the chain of processes of 
hydrological simulations is presented. 

3.2.  Consideration of rainfall estimation 
uncertainty 
The propagation of errors affecting radar rainfall 

estimates to runoff simulations is considered through 
the ensemble approach proposed by Llort et al. 
(2008).  

In this method, the error field of rainfall estimates 
 is characterized as the ratio between a 

reference rainfall field , which is the best 
rainfall estimation available, and the observed rainfall 

 in logarithmic units as: 

 
(1) 

The mean of the error field , the standard 
deviation  and a parameter related with the 
spatial autocorrelation of the field , are calculated 
at each time step  of the event, and then mean 
parameters ( ,  and ) are derived for the entire 
event.  

An ensemble of rainfall estimates  is generated 
with: 

 
(2) 

where using a stochastic process, one can generate 
as many perturbation fields  as needed with 
identical statistical properties (i.e. imposing the values 
of ,  and ), producing an ensemble that is 
representative of uncertainty in quantitative radar 
rainfall estimation. 

3.3. Consideration of parameter estimation 
uncertainty 
The uncertainty derived from parameter 

estimation is considered using the Generalized 
Likelihood Uncertainty Estimation method GLUE, 

(Beven and Binley, 1992). This method is widely 
accepted because it is easy to be understood and 
implemented using formal Bayesian statistical 
procedures (Romanowicz and Beven, 1998; Beven 
and Freer, 2001) or using non-formal likelihood 
measures (Beven and Binley, 1992).  

In order to implement the GLUE methodology, a 
total of 5000 parameter sets are produced from 
uniform distributions defined in ranges for each 
parameter shown in Table 2. It is necessary to define 
a likelihood function and a threshold value for the 
selection of the acceptable parameter sets. The Nash 
efficiency coefficient (Nash and Sutcliffe, 1970) is 
selected as the likelihood function for the evaluation of 
the simulation results, and a threshold value of 0.5 is 
applied. In consequence, those parameter sets 
producing values lower than 0.5 in the Nash efficiency 
are rejected from the acceptable parameter sets. 
Table 2: Feasible range values of the parameters from 
DiCHiTop model. 
Symbol Parameter name Units Min Max 

 Velocity of flow in 
hillslope 

[m 
min-1] 

5 40 

 Velocity of flow in 
river 

[m 
min-1] 

80 240 

 Exponential variation 
of transmissivity 

[m] 0 0.1 

 Horizontal 
transmissivity 

[ln(m2 
h-1)] 

-1 4 

 Correction factor for 
curve number 

[-] 0 0.85 

4. RESULTS 

4.1. Calibration process 
A calibration procedure based in GLUE has been 

applied on the events from Table 1. The resulting 
distribution of model parameters has been obtained 
and the results are shown in Figure 2.  

 
Figure 2: Nash efficiency values obtained for the evaluated 
parameter sets on each calibration event. 

From this figure, one can see that for 
independent events, multiple parameter sets produce 
simulations with Nash values larger than the 
acceptance threshold values. The shape of the 
distribution of the parameters is uniform during all the 



cases. Thus, it can be seen that there is not a clear 
identifiability of the model parameters. 

The likelihood values obtained for each model 
parameter are updated using the GLUE method, and 
only ten parameter sets have been found to produce 
acceptable simulations for all the calibration events. 
The acceptable parameters for all the events are 
shown in Figure 3. These parameter sets are used to 
produce the confidence limits for the simulations. 
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Figure 3: Acceptable parameter sets for all the calibration 
events obtained after updating the likelihood values using the 
GLUE method. 

In Figure 4, one can see the results obtained in 
the four calibration events. During the 10 June 2000 
event the model has a good performance. Lower 
performance is obtained during the simulations of the 
08 October 2002 event. For the other events the 
results are acceptable. In all the events the model 
estimates accurately the observed time peak. 
However, it is not able to reproduce the magnitude of 
the peak value, except in the 10 June 2000 event. 

4.2. Validation process 

4.2.1. Propagation of parameter estimation uncertainty 
The ten acceptable model parameters found 

during the calibration procedure have been used to 
configure the model for the validation event. In order to 
evaluate the effect of the model parameters, the ten 
acceptable sets are evaluated using the observed 
radar rainfall as meteorological input to the model. 
With the aim of comparing the results obtained in the 
simulations, a reference simulation is produced using 
the observed radar rainfall precipitation as input to the 
model and the optimal model parameter set as 
configuration of the model. The spread of the obtained 
simulations is representative of the uncertainty derived 
from parameter estimation. The results of these 
simulations are shown in Figure 5. Different model 
parameters produce different results in the behavior of 
the peak flow, time peak and recession curve. None of 
the simulations has been able to reproduce accurately 
the behavior of the observed flow. However the spread 
of the simulations contains almost every time step to 
the observed flow. The deviation between the 
observed and simulated discharges can be explained 
by errors in the model structure or errors in the time 
series of the observed discharge. 
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Figure 4: Results obtained during the calibration events. Solid 
line represents the observed flow. The dashed lines are the 
envelopes produced with the confidence intervals of 10% and 
90% of the simulations. 
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Figure 5: Results for the analysis of uncertainty due to the 
estimation of model parameters obtained in the 2 April 2007 
validation event. The solid line represents the observed flow. 
Grey lines are the simulated flows. The dashed line is the 
reference simulation. 

4.2.2. Propagation of rainfall estimation uncertainty 
The effect of the uncertainty in the estimation of 

precipitation is also analyzed. For this purpose, an 
ensemble of ten members of radar precipitation 
estimates has been used as input to the hydrological 
model. Aiming to study separately the effect of each 
source of uncertainty at this experiment, the model 
parameter is set to the one with the highest likelihood 
value derived from calibration. Figure 6 shows the 
results obtained during the validation event of 2 April 
2007 for rainfall estimation uncertainty. One can see 
that the effect of precipitation estimation uncertainty 
affects mainly the estimation of peak flow, where the 
higher spread of the simulations is obtained. The 
errors in time peak estimation are due to the effect of 
the parameter estimation, where the selected 
parameter case in this event can not reproduce 
adequately the behavior of the discharges.  
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Figure 6: Results for the analysis of uncertainty due to the 
estimation of radar rainfall in the event of 2 April 2007. The 
solid line represents the observed flow. Grey lines are the 
simulated flows. The dashed line is the reference simulation. 

Comparing the spread of the simulations due to 
the effects of precipitation and model parameter 
estimation, it can be found that model parameters 
produce higher spread of the flow simulations. This 
can be also understood as that there is a higher 
uncertainty in the estimation of discharges due to the 

effect of parameter estimation that for the effect of 
rainfall estimation. 

4.2.3. Interaction between both sources of uncertainty 
Once the effects of each source of uncertainty 

have been analyzed separately, it is analyzed the 
effect of their interaction. For this purpose, the ten 
model parameter sets are combined with the input 
obtained from the ensemble of ten members of 
precipitation estimates, producing a total of 100 flow 
simulations, which are representative of the effect of 
the interaction of both sources of uncertainty. The 
obtained results are shown in Figure 7. The interaction 
of these sources produces an amplification effect of 
the spread of the simulations. This effect can be 
explained due to non-linear processes occurring in the 
model structure. As in the previous cases, a problem 
occurs in the estimation of time peak, where can be 
seen a delay between 5 and 10 hours approximately. 
When both the precipitation and parameter estimation 
uncertainties are taken into account within the 
modeling system, the ensemble of discharge 
simulations is able to contain to the observed 
hydrograph, producing more confident simulations of 
the discharge behavior in the catchment. 
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Figure 7: Results for the analysis of uncertainty due to the 
interaction between radar rainfall and parameter estimation in 
the event of 2 April 2007. The solid line represents the 
observed flow. Grey lines are the simulated flows. The 
dashed line is the reference simulation. 

5. CONCLUSIONS 
In this research, a radar-based flood modeling 

system is implemented in a Mediterranean catchment. 
The aim of this research is the provision of a 
methodology that addresses a question concerning 
the propagation of uncertainty to the results of 
hydrological modeling, due to errors arising from 
rainfall estimation and parameter estimation.  

Five rainfall runoff events occurring in a 
Mediterranean catchment have been selected in order 
to implement the proposed methodology. However, 
only one out of the five events could be used during 
the validation process. It is found that a larger 
uncertainty is derived to the resulting simulations due 
to the effect from model parameter estimation 
compared with the effect produced by the estimation 
of radar rainfall.  



Analyzing separately each source of uncertainty 
allows understanding how these affect the results of 
the simulations. The analysis of the interaction of 
these sources of error allows understanding also the 
non-linearity of the model structure. 

The methodology proposed in this research can 
be extended to take into account other sources of 
uncertainty, such as model structure or the errors from 
discharge observations, and gain a better 
understanding of the problem of propagation of 
uncertainty on hydrological modeling. The proposed 
methodology can be extended also to analyze the 
propagation of uncertainty into flash flood forecasting 
systems. 
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