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1.  INTRODUCTION 

 

Radar rainfall estimates are critical input products in 

a distributed hydrologic prediction and flash flood 

forecast models. However, in mountainous regions, 

rainfall measurements from ground-based radar 

observations has of particular difficulty in terms of 

eliminating ground echoes caused by shielding of radar 

beams by high mountains. Since such regions are 

hydrologically important, the need for a rainfall product 

of better accuracy is critical for hydrological prediction.  

To improve estimates over radar-gap, studies on 

multi-source precipitation estimates have been pivotal. 

Most such research efforts on multi-source data are 

about calibrating or merging radar- and/or satellite-

based rainfall with rain gauge observation to improve 

quantitative precipitation estimation (QPE) (e.g. Seo 

(1998b)) assuming that rain gauge observations can 

reliably account for the true values of point-based 

rainfall. Kondragunta et al., (2005) integrated bias 

corrected Satellite Precipitation Eastimates (SPE) with 

respect to the rain gauge data to fill the radar-gap and 

create a radar mosaic algorithm implemented in the 

quantitative Multi-sensor Precipitation Estimation (MPE). 

In this study, capability of using the Successive 

Correction Method (SCM) in conjunctioin with a 

Bayesian spatial model to produce a multi-source 

rainfall data by combining radar, satellite, rain-gauge 

and PRISM (Parameter-elevation Regressions on 

Independent Slopes Model) products over an artificially 

created radar gap in Oklahoma, geographically 

 

 

 bounded by 34
o
 – 37

o
 latitude north and 94.5

o
 – 100

o
 

longitude west is evaluated. Real gap areas over radar 

network cannot be used as a test-bed due to lack of 

availability of radar rainfall required for validation of 

generated multi-sources product. Several daily and 4 

km×4 km satellite, radar, rain-gauge, and monthly 

PRISM precipitation products for the year 2006 were 

used for this study.  

Rainfall products from satellite InfraRed (IR) based 

Hydro-Estimator (HE) and radar Stage-II are selected to 

be merged using the SCM so that the artificially created 

gap over the radar network could be filled. The satellite-

radar product from SCM is further combined with rain 

gauge and climatological PRISM precipitation products 

using a Bayesian spatial model. The satellite-radar-

gauge-PRISM combined precipitation product is 

evaluated using three evaluation criteria: coefficient of 

correlation, bias and Nash-Sutcliffe efficiency. 

Generated multi-source rainfall product using this 

method is a better product than HE when it is evaluated 

against independent rain-gauges. The present study 

implies that by using the available radar pixels 

surrounding the gap area, rain-gauge, PRISM and 

satellite products, radar like product is achievable over 

radar gap areas that benefits and has huge impacts on 

hydrological simulations and prediction purposes. 

 

2.  DATA  

 

2.1. Hydro-Estimtor (HE): 

 

One of the approaches, HE (Scofield and Kuligowski, 

2003) uses GOES Infrared window channel-4 (10.7 µm 

wavelength) as the main input data to estimate the rate 
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of surface rainfall. HE was developed as an 

improvement to the original Auto-Estimator (AE) which 

was developed for deep, moist convective systems 

(http://satepsanone.nesdis.noaa.gov/PS/PCPN/HE.html)

. At the (NOAA)/National Environmental, Data, and 

Information Service (NESDIS), HE has been one of the 

operational satellite-based rainfall product since 2002, 

and has been available for use at a spatial scale of 4 km 

by 4 km and time scale of 1 hour for the US (CONUS) 

since 2004. 

 

2.2. Radar Stage II (ST-II) 

 

At NWS, there are four stages of radar based 

rainfall products. References such as Fulton et al., 

1998, 

http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/QandA/

#STAGEX contain details of how the different stages of 

radar products are produced. Stage-I radar rainfall 

product is produced for each radar scan at each radar 

site using the Z-R relationship. Hourly Stage-I products 

are then generated by summing up the scan-wise 

accumulations. In the next step, the Stage-I products 

are adjusted for mean field bias using all the available 

rain-gauges to produce bias-adjusted Stage-II. The bias 

adjusted Stage-II products are further optimally merged 

with point rain-gauges. The original WSR-88D algorithm 

has considered quality control and corrections for 

isolated targets and ground clutter, tilt test and 

anomalous propagation, and partial beam correction 

(Fulton et al., 1998).  

Hourly radar ST-II, a mosaicked radar product over 

the CONUS with a spatial resolution of 4 x 4 km
2
 for the 

year 2006 has been used in this study.  

 

2.3. Rain gauges 

 

Rain gauge data are obtained from NCDC’s 

Cooperatives rain gauge stations and Oklahoma 

Mesonet. Under the National Weather Service (NWS), 

thousands of precipitation data are recorded manually 

everyday across the United States by the COoperative 

Observer Program (COOP) which is a public based 

rainfall reporting platform. Measurements from rain-

guages are considered as the true measurements. For 

this study there are more than 40 COOP rian-gauges 

reporting hourly precipitations have been used for model 

calibration. Measurements from these gauges are in 

hundreds of inches. The measurements are converted 

to mm by multiplying (25.4/100). For validation and 

variogram parameter estimation, we used daily 

independent rainfall measurements from the Oklahoma 

mesonet. The Oklahoma Mesonet is a network of 120 

automated environmental monitoring stations. The 

network provides a quality controlled precipitation and 

more than 5 other environmental parameters at these 

locations.  

2.4. PRISM 

 

One of the dataset used in this study is Parameter-

elevation Regressions on Independent Slopes Model 

(PRISM). It is a climatological data including 

temperature, dew-point and precipitation average for the 

conterminous United States at a spatial scale of 4 km. 

For this study, monthly PRISM precipitation data was 

used as one of the covariates. 

  

3.  METHODOLOGY 

 

3.1. Covariate preparation 

 

In a Bayesian spatial model, covariates are 

supplemental data which are known at each grid point 

with the required temporal and spatial resolutions which 

are daily and 4 km. Hence, the radar data with missing 

pixels and monthly PRISM cannot be used directly as 

covariates. The only data that can be directly used in 

the analysis is HE, the rest of the covariates need 

modifications and are developed as follows. 

 

 

 

 



a) ST-II as a covariate 

 

The HE product is merged with that of the ST-II to 

fill gaps over ST-II (Figure 4). We implemented the 

Successive Correction Method (SCM), originally 

developed for data assimilation to calculate missing 

pixels. The SCM uses the information from available 

ST-II pixels surrounding the gap area and satellite 

rainfall to fill the gap pixels (Mahani et al., 2009).  

Assume a selected moving window size m×m with 

its center at u0, the merged precipitation for any missing 

pixel centered at u0 in the gap area is calculated based 

on information from satellite pixels and known available 

radar pixels with in the window.  

Starting from a missing pixel surrounded by the 

maximum number of available radar pixels, the method 

continues calculating other missing pixels by moving the 

m×m window successively.  

For this study, the Brandes’ scheme of SCM has 

been adopted (Brandes 1975). In addition, we 

implemeted the method of Double Optimization 

Estimation (DOE) (Seo 1998b) in the SCM frame-work 

to fill gaps over the radar network (Figure 4). 

 

b) PRISM as a covariate 

 

One of the covariates for this study was the mean 

PRISM climatological monthly precipitation. For this 

study, monthly precipitations from PRISM are averaged 

for past 10 years prior to the year considered in the 

study before they are used as a covariate for this study. 

The averaged monthly PRISM products are 

disaggregated into daily by calculating percentage 

partial fractions using the daily gauge measurements 

(Schaake et al., 2004). Percentage partial fractions are 

calculated for the monthly averaged data using the 

method explained as in (Schaake et al., 2004). The 

percentage partial fractions are multiplied by the 

monthly averaged PRISM products to calculate the 

required daily PRISM covariate.  

 

3.2. Bias correction 

 

Before merging ST-II with HE to fill gaps in the 

radar network, the HE is bias corrected against the 

radar and rain gauges using the method of ensembles 

(Tesfagiorgis et. al, 2011). 

 

3.3. Bayesian Spatial Model 

 

Assuming a spatial Gaussian process in a linear 

spatial regression model, the random rainfall field Z can 

be given as: 
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Where Xi is a covariate and βi is model parameter; 

ε(s)~N(0,cov(Z(s),Z(u)). 

In a Gaussian process the covariance matrix can 

be modeled as 
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|| us − is a Euclidean distance between two locations 

s and u. 
2δ is the nugget. 

Assuming an exponential variogram function, the 

correlation function can be given as: 

)/exp(),( ηκθ usus −−=
 

  (3) 

 

3.2.1 Parameters and Priors 

 

The next step is to assign priors for the parameters. 

The parameters, βs, σ2, δ2, τ2 and η should be assigned.  

It is assumed that priors are conjugate with posteriors. 

 We used an independent prior distribution for β 

and σ2
. Where β is a Normal distribution; where as σ2

 

and δ2 follow the inverse gamma function with some 

shape and rate parameters.  

To model the spatial model we used 

‘bayesGeostatExact’ in R (Finley et al., 2007). It is a 

Bayesian spatial linear model with fixed semivariogram 



parameters. The fixed parameters to model the spatial 

field in ‘bayesGeostatExact’ are (spatial range) and the 

ratio between  δ2  and partial-sill. We calculated the fixed 

parameters from the experimental variogram using rain 

gaguges. For our choice of the experimental variogram, 

we employed the exponential experimental variogram 

as shown in Figure 1.  

We assumed an isotropic one dimensional 

variogram which represents the spatial roughness of a 

spatial data set quantitatively for fixed parameters 

estimation. The variograms are produced using the daily 

mesonet datasets. Out of the total 120 Mesonet 

raingauges, we have picked 60 of them to develop the 

variogram.  

The most ideal condition is to calculate the 

parameters for each rainy day. But from feasibilty and 

efficieny point of view, it is better to determine this 

parameter using all rainy days using the mesonet rain 

gauge points. Instead we consider the mean of all the 

daily variograms. The red line in Figure 1 is the mean of 

the individual blue semi-variograms. 

Referring Figure 1, a more conservative choice of η 

(spatial range) 5 km was used. The parameter indicating 

the ratio between the nugget (30 mm
2
) and   sill 

 
(150 

mm
2
) 1/5 was used (Figure 1). The numbers in this 

figure represent selected rainy days.  

 

Figure 1 Experimental semivariogram using 
Mesonet rain gauges. 

 

A prior of an inverse gamma function with shape 1 

and rate 1 was used for the  σ2
. 

10000 posterior samples were collected for each 

daily simulation. The βs multivariate normal mean vector 

hyper prior is (1,1,1). β multivariate normal precision 

matrix hyperprior is diag(1,1,1). We have applied an 

exponential covariance model. 

The function spPredict is used to make predictions 

at unknwon locations. The function collects the posterior 

predictive samples of the new locations given by the 

bayesGeostatExact. We have applied 1000 chain burn-

in. 

 

4.  RESULTS 

 

9 daily rainy days in 2006 (0110, 0128, 0319, 0320, 

0323, 0504, 0508, 0509 and 0617) considered for model 

calibration and validation. In the Bayesian model, the 

posterior of the parameters are collected from the model 

based on 10,000 samples. In some cases, the number 

of rain-gauges is relatively small; however satisfactory 

results are obtained in such cases. A sample multi-

source product is shown for 20060504 (Figure 5). 

Quantitative statistical evaluation criteria 

(Correlation coefficient, Bias and Nash-Sutcliff 

Efficiency) were calculated using reference gauges 

which were not used for model calibration. Figures 8 

and Table 1 compare the performances of the multi-

source method using these performance criteria. Table 

1 summarizes these statistical criteria. In this table, the 

daily statistical criteria are averaged for the study 

period. The figure demonstrates the performance of the 

merged product, ST-II and HE for each rainy day.  

 

5.  CONCLUSION AND FUTURE WORK 

 

The multi-source rainfall products produced by 

combining different existing rainfall estimates have 

shown better accuracy and correlation than the 

individual rainfall fields (the radar-only product (ST-II) 

and Satellite product (HE)) against independent 

mesonet gauges (Figure 8 and Table 1). The 

correlations obtained for this multi-source product 



ranged from 0.4 to 0.86. In some cases a correlation 

value of 0.4 was obtained. The merged product can 

effectively be used to fill gaps of up to a size of 1.5
o
 × 

1.5
o
. This occurs because the orginal inputs, ST-II, HE  

and PRISM are highly biased at the calibration gauge 

spots. The Nash-Sutcliffe Efficiency (NSE) and Bias for 

the model is much better than the individual rainfall 

products. 

The results are further validated in real gap areas. 

Further results will be reported in the future. 

 

Figure 2 Radar product Stage-II with the artificially 
created gap for 20060504 

 

Figure 3 Satellite Precipitation product Hydro-
Estimator for 20060504 

 
Figure 4 ST-II merged with HE to fill gaps 

 

Figure 5 A merged product for 20060504. 

 

Figure 6 Mesonet Rain gauge network and their 
measurements for parameterization and validation 
for 20060504 

 

Figure 7 COOP rain gauges used for calibration for 
20060504 

 

 



 

 
Figure 8 A time series of the three statistical 

criteria (Bias, Nash-Sutcliff Efficiency (NSE) and 

Correlation Coefficient (CC)) 
 
Table 1 Summary of statistics of ST-II, HE and 
Merged product compared with Mesonet gauges. 
CC(correlation Coefficient), NSE (Nash-Sutcliff 
Efficiency). Values are mean of the 9 rainy days 
considered. 

Data 

source 

CC Bias NSE 

ST-II 0.40 1.06 -1.70 

HE 0.36 0.64 -9.07 

Merged 

product 

0.65 0.94 0.33 
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