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1. INTRODUCTION 
 

Hydrologic Analysis Support 
forecasters at River Forecast Centers 
presently make use of centrally-produced 
precipitation guidance, and recent remote-
sensor data from radar and satellite, to 
produce short-range quantitative 
precipitation forecasts (QPFs) for river 
forecasting.  At present, the methods for 
blending these data are almost completely 
subjective.  This task is especially 
challenging in situations where large, 
evolving mesoscale systems impact entire 
river basins. 

Automated precipitation forecast 
systems that combine information from 
numerical weather prediction model 
forecasts and remote sensors have been 
implemented in a number of settings. (Sokol 
and Pešice 2009; Li and Lai 2004; Pierce et 
al. 2004). Direct application of radar 
nowcasting tools to hydrologic prediction 
has recently been tested in a number of 
applications (see for example Ganguly and 
Bras 2003; Vivoni et al. 2007). 

An effort to develop and test an 
advective-statistical method for short-range 
QPFs has been undertaken by the NOAA 
National Weather Service (NWS) Office of 
Hydrologic Development.  Here, we report 
on a new, regression-based technique that 
combines information from a numerical 
weather model and an advective-statistical 
nowcaster.    

This technique ingests radar and 
satellite precipitation rate estimates and 
forecasts of the Rapid Update Cycle 2 
(RUC2, hereafter referred to as RUC; 
Benjamin et al. 2004) operational numerical 
prediction model.  It includes advective 
components for the radar and satellite fields, 
and directly inputs precipitation and humidity 

forecasts from the RUC.  Of particular 
interest is the fact that the RUC itself is 
initialized with three-dimensional radar 
reflectivity  (Weygandt et al. 2007); hence 
we wished to determine if there is additional 
value to be gained from further radar input, 
through the extrapolation model. 

Here, we describe development 
methodology, results for a recent heavy 
precipitation event, and the skill level of the 
QPFs relative to currently-available 
operational products, namely RUC forecasts 
and human-produced forecasts of the NCEP 
Hydrometeorological Prediction Center. 

 
2. COMPONENTS OF THE FORECAST 
SYSTEM 

 
Our developmental QPF model 

(hereafter denoted RS-REG for Remote-
Sensor REGression) incorporates both 
remote-sensor-driven extrapolative forecasts 
and physical/dynamical numerical weather 
prediction model forecasts.  A statistical 
regression procedure is used to produce an 
optimally-weighted combination of the inputs 
relative to the desired predictands, which 
are probability of precipitation ≥ 0.25, 2.5, 
12.5, 25, 50, and 75mm in a 6-h period.  
Hereafter these forecasts are referred to as 
P(0.25mm), P(2.5mm), and so on.  A QPF 
amount forecast is derived by comparing the 
probability forecasts P(2.5mm), P(12.5mm), 
P(25mm), and P(50mm) to a set of threshold 
values.  The forecast fields are defined on a 
grid mesh of approximately 4 km, and are 
valid for the periods 0000-0600, 0600-1200, 
1200-1800, and 1800-0000 UTC.    

 
2.1 Remote sensor, numerical prediction, 
and developmental inputs 
 

Radar precipitation rate input is taken 
from the prototype National Mosaic and 
Multisensor Quantitative Precipitation 
Estimation System (NMQ, Zhang et al., 
2011). Satellite precipitation rate input is 

Contact: David Kitzmiller, W/OHD-12, 
1325 East West Highway, Silver Spring 
Maryland, <david.kitzmiller@noaa.gov> 

1



from the operational Hydroestimator 
algorithm (Scofield and Kuligowski 2003).  
Lightning strike input is taken from the 
National Lightning Detection Network 
(Orville et al 2008). 

To account for the possibility that the 
extrapolation and RUC forecasts might have 
time-dependent influences on the final 6 h 
forecasted precipitation amount, we input as 
predictors separate forecasts for the first 
and second halves of the valid period, as 
well as the 6-h total amount forecast.   

The current precipitation predictor 
input data can be summarized as follows: 

 
Initial-time radar and Hydroestimator 

precipitation rates, and lightning strike rates; 
0-3h, 3-6h, and 0-6h radar- and 

satellite-derived rainfall amount, and 
lightning strike count, estimated by 
extrapolation; 

0-3h, 3-6h, and 0-6h RUC rainfall 
amount; 

RUC stability indices, relative 
humidity, and precipitable water at the start 
of the valid period; 

 
The remote sensor input is the latest 

that is operationally available up to about 10 
minutes prior to the start of the valid period, 
to allow for processing time in order to 
complete the forecasts by the start of the 
valid period.  The radar input is based on 
data at 15 minutes prior to initial time, the 
satellite input from infrared imagery at 45 
minutes prior to initial time, and lightning 
input from the 15-minute period  starting 40 
minutes prior to initial time.  The RUC inputs 
are from the model run initiated one hour 
prior to the valid period.  

The development stage (but not real-
time forecasting) requires ground validation 
precipitation estimates.  These were taken 
from the Stage IV gauge/radar analysis, 
produced at NWS River Forecast Centers 
and spatially composited at NCEP (Lin and 
Mitchell, 2005).  The StageIV data are 
defined on the same 4-km grid mesh that 
defines the QPF model output fields.  

 
2.2 Extrapolation-Advection Model in 
RS-REG 
 

While extrapolation of radar echoes 
and cloud patterns is generally effective out 
to a few hours, estimation of future 

precipitation motion beyond about three 
hours is problematic because the patterns 
are generally forecasted to move into clear 
areas where no precipitation existed at the 
initial time. For prediction of echo motion as 
far ahead as six hours, we have applied a 
combination of extrapolation (future motion 
estimated from the previous motion of the 
echo pattern) and advection (future motion 
estimated from the lower tropospheric wind 
field).  The initial-time echo motion field 
features extrapolation vectors based on lag-
correlation pattern matching between recent 
radar image pairs, using a method now 
applied operationally in the High-Resolution 
Precipitation Nowcaster (Guan et al., 2005).  
These vectors are spatially blended with the 
NWP mid-tropospheric field in clear areas. 
At 1-h intervals, the motion field is updated 
such that the vectors tend toward the RUC-
forecasted wind field. This updating is done 
by successively averaging the initial-time 
motion field with the RUC wind forecasts, 
placing increasing weight on the RUC fields 
until at 5 hours, the storm motion is entirely 
from the wind fields.  Experimentation 
showed that this method produces realistic 
echo pattern evolution, and the resulting 
extrapolation QPFs are at least as skillful as 
those of the RUC. 
 
3.  STATISTICAL PREDICTION MODEL 
DEVELOPMENT 

 
3.1 Data sample for development 

 
A developmental data pool was 

formed by drawing predictor and predictand 
values from points at 0.25º latitude-longitude 
intervals, during the period April 2009 – 
March 2011, over the conterminous United 
States. Figure 1 shows this selection grid.  
Data for one case in the development 
sample consists of all predictor values and 
predictand (observed precipitation) values at 
one point during one forecast period on one 
day.  After all data were collected, forward-
selection screening regression was used to 
select predictor combinations for the various 
predictands. 

The data sample included only cases 
with at least one predictor among the radar, 
satellite, and RUC variables indicating 
precipitation ≥ 0.25 mm.  In practice this 
sample captures all but a very few 
significant precipitation events.  Due to the 
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need for forecasts outside the radar 
network, or in areas of the CONUS poorly 
served by radar at present, backup 
equations using only RUC and 
Hydroestimator predictors, but not radar, 
were also derived, and applied as explained 
below. 

Examining some of the 
predictor/predictand relationships for the 50- 
and 75-mm threshold values indicated the 
need to account for nonlinear 
predictor/predictand joint distributions.  
Accordingly, we prepared two-predictor 
contingency tables to determine the nature 
of the relationship.  The relationships were 
generally well-described by a biquadratic 
equation, such as an expression for 
P(50mm) based on radar and RUC 0-6h 
precipitation forecasts: 

 
BIQUAD-50mm = 0.217 + 0.023 RUCP – 
0.024 RADP – 0.0012 RUCP2 + 0.0013 
RADP2 + 0.0041 RUC RADP 

 
where RADP is the radar forecast (mm), 
RUCP is the RUC forecast (mm), and 
BIQUAD-50mm is in percent.  These 
predictor relationships were derived from 
data for all forecast periods based on data 
from the entire CONUS, then offered to the 
screening regression as new predictors.  
The linear regression procedure and 
geographic localization procedures 
explained below adjust the probabilities 
higher or lower to agree with local 
climatology. 
 A probability equation typical of 
many in the central United States is that for 
P(2.5mm) at latitude 36ºN, -90 ºE during the 
1800-0000 UTC valid period: 
 
P(2.5mm) = -0.0197 + 0.0434 [RAD-RUC 
BIQUAD] + 0.0188 [SAT-RUC BIQUAD] 
 
where P is a fraction (0-1), RAD-RUC-
BIQUAD is a biquadratic expression 
involving the 0-6h radar precipitation 
forecast and RUC 0-6h precipitation 
forecasts, defined in mm; and SAT-RUC 
BIQUAD is a biquadratic expression relating 
the Hydroestimator and RUC 0-6h 
precipitation amount forecasts to the 
probability of 25-mm precipitation, defined in 
per cent   Note that expressions for 
precipitation amount and for probability were 

both commonly selected as probability 
predictors. 

 
3.2 Geographic localization of forecast 
equations 

 
Because of the climatic diversity of 

precipitation across the conterminous United 
States, we stratified the development 
subsamples by geography, the valid time 
period, and warm and cool seasons, namely 
April-September and October-March 
respectively.   

Examination of the precipitation-
based predictors and StageIV estimates 
showed that in broad-scale terms, the 
predictors clearly reflect geographic 
variations in precipitation, though with some 
characteristic biases.  In some cases the 
biases can change appreciably in small 
spatial intervals, indicating a need for 
geographic stratification.  This stratification 
must usually be carried out on regions of at 
least 10,000 km2, in order to collect enough 
of the high-precipitation events to obtain 
reliable regression relationships (Charba 
and Samplatsky 2011a). 

While it is possible to define fixed, 
irregularly shaped regions that reflect major 
topographic and climatic regions, the 
definition process has some subjectivity, and 
subsequently there might be a need for 
smoothing of the forecast fields near region 
boundaries (Charba and Samplatsky 
2011b).  Our approach was designed to 
bypass this regionalization procedure by 
drawing subsamples of cases from within 
floating, overlapping latitude-longitude 
windows of 3x3°, 5x5°, and 7x7° 
dimensions, centered at 1° intervals.  The 
rectangular boxes in Fig. 1 indicate the 
approximate size of these areas.  At least 
1500 individual precipitation cases were 
required to attempt to identify a regression 
relationship; often 20,000 cases were 
available within a 3x3° box.  However, for 
dry regions and the lower-frequency high 
precipitation events, it was necessary to 
specify a sample from the 5x5° or 7x7° box 
to obtain a sufficient sample and a realistic 
regression equation.  The equation from the 
smallest possible box is used in real-time 
prediction. 

This procedure yielded equations at 
750 to 900 latitude-longitude points.  It was 
not possible to obtain regression 
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relationships for some of the higher amount 
thresholds in the driest parts of the western 
United States, even from the largest 
sampling box. The central latitude-longitude 
point is considered the nominal location of 
any given equation.  The regression 
coefficients applied at any point of the 4-km 
forecast grid are those from the closest 
location.  This convention supplied equation 
coefficients at all forecast grid boxes.  
Finally, a smoothing procedure was applied 
to all equation coefficient values at all points, 
resulting in a continuous spatial transition in 
the coefficients. 
 
3.3 Forecast equations in and near radar 
coverage gaps 

 
Because of known coverage gaps in 

the WSR 88D network (Maddox et al. 2002), 
it is necessary to treat the contingency of 
forecasts where the radar-based component 
is generally zero.  In previous work (Wu and 
Kitzmiller 2011), a form of radar coverage 
map was derived through estimation of the 
long-term correlation between NMQ daily 
precipitation and forecasts of the North 
American Mesoscale model.  At any one 
geographic point, this correlation value 
serves as a measure of radar quality.  
Based on comparisons with known 
geographic coverage gaps, wherever this 
correlation was < 0.5, it was assumed the 
radar coverage was suspect for forecasting 
purposes.  However, it is still possible for 
radar precipitation from nearby areas of 
good coverage to be advected into the area 
of poor coverage.  Therefore, the forecast 
values from the current radar-based and 
satellite-based estimates are compared, and 
that giving the higher probability is applied at 
that geographic location. 
 
3.4 Commonly-selected predictors for 
probability equations 

 
Results from the screening regression 

procedure showed that the most useful 
predictors for all amount thresholds included 
the RUC and 0-6h radar precipitation 
forecasts, and the nonlinear combination 
predictors derived from them; 1000-500hPa 
mean relative humidity from RUC forecasts; 
and the 3-6h RUC precipitation forecasts.  
Though they were offered for screening, the 
initial-time radar and satellite precipitation 

rates, and lightning-based predictors, were 
rarely selected, since they possess limited 
information about the remainder of the 6-h 
forecast period.  Over about 5% of the total 
area, mainly in the western portions, the 
satellite-based predictors were selected 
rather than radar-based, likely a reflection of 
radar coverage limitations. 
 
3.5 Deterministic amount forecasts based 
on probability forecasts 

 
While probability forecasts are 

informative, hydrologic applications 
generally require a precipitation amount 
forecast.  To derive this forecast while 
employing information from the probability 
forecasts, we employed a method similar to 
that described by Charba and Samplatksy 
(2011a), who applied a set of threshold 
criteria to the probability forecasts at any 
one point to derive an amount forecast for 
that point. 

Our approach is based on 
determining probability forecast values that 
occur at the same relative frequency as 
certain observed precipitation amount 
thresholds, within the 2009-2011 
development data sample.  For example, 
P(2.5mm) probability forecasts ≥ 0.14 occur 
as often as observed precipitation ≥0.25mm; 
therefore this probability value is treated as 
a threshold for an amount forecast of 
0.25mm.  At any point where this threshold 
is exceeded, the P(2.5mm) is compared to 
successively higher thresholds to determine 
higher precipitation amount forecasts up to 
15mm. 

If the P(2.5mm) exceeds 0.9, the 
P(12.5mm) forecast is compared to 
thresholds to define amount forecasts from 
15 to 30mm.  If the P(12.5mm) value 
exceeds 0.6, the 25-mm probability forecast 
is tested to estimate amounts up to 50 mm, 
and 50-mm probabilities apply to amounts 
above 50mm.  

This approach yielded a distribution of 
forecast amounts closely approximating the 
observed distribution, within the 
development sample, and it was anticipated 
that the relationships would hold for 
independent data. 
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4.  EXAMPLE OF INPUT AND RESULTING 
FORECAST FIELDS 
 

An illustration of the forecast 
procedure including input from the T.S. 
“Lee” event of September 2011 is shown in 
Fig. 2.  Both NMQ radar and Hydroestimator 
satellite algorithms indicated extensive 
heavy rainfall over the eastern United States 
around 1130 UTC on 5 September 
(Fig. 2a,b).  The extrapolation/advection 
procedure outlined above resulted in the 
forecast precipitation patterns for the 1200-
1800 UTC period shown in Fig. 2c,d; these 
are similar to the RUC forecast valid during 
the same period (Fig. 2e).  Some amounts in 
excess of 75mm (3 inches) were indicated 
by these input forecasts. 

The regression equations applied to 
this radar, satellite, and RUC input resulted 
in probability forecasts P(2.5mm), P(25mm), 
and P(50mm) as appear in Fig. 2f-h.  As 
would be expected, the highest probabilities 
are in the area from eastern Alabama 
through northern Mississippi, into 
Tennessee and Kentucky.  Some P(25mm) 
values were in excess of 60%, and P(75mm) 
values in excess of 15%, which are 
exceptionally high values.  High probabilities 
were also indicated in the path of intense 
convection over smaller areas extending into 
the northeastern United States. 

Through the threshold comparison 
procedure described in Section 3, the 
probability forecasts define a QPF amount 
forecast, as illustrated schematically in 
Fig. 3a-e.  The amount forecast (Fig. 3e) 
featured values in excess of 75mm over 
Alabama, and values above 25mm over a 
large surrounding area, as well as farther 
northeast.  The forecast grid from HPC 
(Fig. 3f) features less spatial detail, because 
of its issuance at a larger grid mesh length 
of 32 km, but this forecast also indicates a 
maximum over 75mm. 

StageIV gauge-radar estimates for 
the valid period (Fig. 3g) showed amounts in 
excess of 75mm and some in excess of 
100mm over Alabama and Mississippi; 
rainfall in excess of 50 mm was also 
estimated over Tennessee and eastern 
Kentucky, the Florida Panhandle, and 
extreme northeastern Georgia.  Some 
values above 25mm were observed as far 
north as New York, Vermont, and Quebec.  
The overall pattern was clearly reflected in 

the forecast probability and amount fields, 
though some features such as the areas of 
heaviest rainfall over Pennsylvania and New 
York were not captured.  These might have 
been due to subsequent development of 
embedded convection. 
 
5. VERIFICATION RESULTS AND 
DISCUSSION 
 
Following final development of the forecast 
probability equations with data from the 
period April 2009 through March 2011, we 
prepared a limited verification test with 
cases from April-June 2011.  The warm–
season probability forecast equations were 
applied to these data, and then evaluated in 
several ways.  We also compared the 
scores to those for the RUC model, and for 
forecasts of the NCEP Hydrometeorological 
Prediction Center (HPC), which are 
prepared for the same valid periods and 
issued in gridded form (Olson et al. 1995).   

This verification was carried out 
within a sample similar to that for the 
development dataset, that is, only including 
cases with RUC, radar or satellite 
precipitation forecasting ≥ 0.25mm 
precipitation.  This sample features cases 
with at least some minimal chance for 
precipitation recognizable in advance.  We 
found that the regression, HPC, and RUC 
forecasts rarely differed greatly in the size 
and shape of forecasted precipitation 
regions, therefore this appears to be a 
reasonable standard for evaluation.  For this 
evaluation, a subset of ~200,000 randomly-
selected forecasts from each of the four 
valid periods was tested.  To this point, no 
geographic breakdown of the verification 
statistics has been attempted.   

A primary concern is that the 
forecasts are reliable, that is, the mean 
forecast closely approximates the mean 
observation.  As shown in Fig. 4, the mean 
RS-REG QPF amount forecast is very close 
to that of the observed, while the RUC 
forecasts have a high bias during the 
daytime periods, and HPC forecasts have a 
slight high bias in general. 

Examination of probability forecasts 
for the 1800-0000 UTC valid period (Fig.5) 
showed good reliability for the forecasts of 
12.5- and 25-mm events, while the 
occurrence of 0.25 and 2.5 mm was under-
forecasted, by about 20% and 15% 
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respectively.  The rare 50-mm and 75-mm 
events (not shown) were over-forecasted.  
Similar results were found for the other three 
valid periods. 
 The accuracy of the amount 
forecasts was evaluated in terms of the root-
mean-square-error (RMS).  Here, we found 
that the RS-REG produced poorer results 
than either the HPC forecasts or RUC 
forecasts (Fig. 6a).  This is despite the fact 
that the RS-REG forecasts clearly had a 
higher rank correlation with observations 
than did the RUC in both the development 
and the verification samples (verification 
sample results shown in Fig. 6b).  Further 
examination revealed that this could be due 
to an excessive number of large RS-REG 
forecasts > 50mm within the verification 
sample.  Though the amount forecasts were 
well-calibrated within the development 
sample of data from 2009-2011, they did not 
properly match the high end of the observed 
distribution in the 2011 sample.  This 
indicates a need for redevelopment of the 
equations with more data. 
 We did, however, determine that for 
the higher precipitation thresholds > 25mm, 
the information content of the RS-REG 
probability forecasts was clearly higher than 
that of the RUC component, and generally 
competitive with that of the HPC forecasts.  
To illustrate this finding, we converted the 
RS-REG probability forecasts, and the HPC 
and RUC amount forecasts, to yes/no 
forecasts corresponding to thresholds of 25, 
50, and 75mm.  These were then scored in 
terms of probability of detection (POD) and 
critical success index (CSI).  These are 
defined: 
 
POD = X / (X+Y); CSI = X / (X + Y + Z) 
 
where X is the count of detected 
precipitation events (“hits”), Y the count of 
missed precipitation events, and Z is the 
count of cases where the event was 
forecasted but not observed (false alarms)  

For all three sets of forecasts, a 
range of yes/no conversion thresholds was 
tested; the HPC and RUC forecasts were 
only rarely above 50mm and relying on the 
actual amount forecasts resulted in  
detection of < 0.05 of observed events.  The 
goal was to find the conversion threshold 
yielding the maximum CSI, subject to POD 
≥ 0.25.  The value of the HPC or RUC 

forecasts was generally maximized by 
selecting a threshold lower than the stated 
value, for example, all forecasts ≥ 30mm 
would be converted to a 50mm “yes” 
forecast.  For the RS-REG forecasts, a 
range of conversion probability thresholds 
was tested. 
 When the forecasts and 
observations were examined in terms of 
maximum CSI, we found that the HPC 
forecasts generally yielded the highest 
values for the 25-mm threshold for all four 
forecast periods (Fig. 7a), while for the 50- 
and 75-mm thresholds the RS-REG 
forecasts were close to or higher than the 
HPC values (Fig. 7b,c).  The exception was 
for the 1800-0000 UTC period, when the 
HPC values were much higher than either 
RS-REG or RUC.  Given that the CSI was 
generally correlated among the three 
forecasts, it is possible that this last result is 
due to chance and the rarity of the 50- and 
75-mm events.  However we note that the 
RS-REG scores were consistently higher 
than those for the RUC in all four valid 
periods. 
 Since the purpose of this 
development effort was to provide an 
adjunct guidance product to that currently 
available, we investigated some possibilities 
for considering the HPC and RS-REG 
forecasts together.  Examination of cases 
with a clear potential for high rainfall 
revealed that, if any one among the RUC, 
HPC, or RS-REG forecasts indicated a high 
amount > 25mm, then the most additional 
information could be obtained by reference 
to one of the other forecast systems.  For 
example, within the set of ~6,000 cases in 
which the HPC forecast was ≥ 25mm, the 
RUC and RS-REG forecasts were more 
highly correlated with observed 25-mm 
events than was the HPC forecast itself.  As 
shown in Table 1, there was clearly 
independent information in the RS-REG 
forecasts, such that if the RS-REG QPF was 
also ≥ 25mm, the probability of an observed 
event was appreciably higher than if the 
RS-REG forecast was < 15mm (0.43 vs. 
0.26). 
 
6.  CONCLUSIONS 
 

A prototype system for merging 
information from radar, satellite, and 
numerical prediction model QPF was 
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developed.  To create the prototype, a set of 
regression relationships were derived 
between an observed predictand, namely 
StageIV gauge-radar gridded precipitation 
analyses, and predictor variables derived 
from extrapolative/advective forecasts of 
precipitation amount based on radar and 
satellite information, and numerical forecasts 
of the RUC model.  Following development 
with a two-year set of training data from 
2009-2011, the RS-REG system was tested 
on new data from 2011.  The results thus far 
confirm that information from extrapolation 
of radar and satellite remote sensor 
estimates of precipitation rate, and from the 
operational numerical RUC model, are 
complementary.  We also saw evidence of 
the complementary nature of the automated 
RS-REG system and operational products 
produced by human forecasters at HPC.  It 
should be noted that the very small 
verification area for each datum, 4x4 km or 
16 km2, represents a severe forecasting 
challenge, and absolute accuracy is likely 
higher over larger spatial domains.  

At present, we operate the RS-REG 
system in real time within the Office of 
Hydrologic Development.  Future 
operational deployment depends on positive 
evaluations by end users, particularly HPC 
and River Forecast Center staff.  We are 
investigating possibilities for limited real-time 
dissemination of the prototype forecast 
products. 
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Figure 1.  Distribution of data-sampling points applied in the process of developing regression 
equations; points fall at 0.25º intervals.  Concentric boxes at upper left indicate the approximate 
size of the 3x3º, 5x5º, and 7x7º sampling boxes used in collecting samples for regression.
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Figure 2.  Input and RS-REG forecasts valid 1200-1800 UTC, 5 September 2011.  Radar (a) and satellite (b) 
input are extrapolated to produce 6-h precipitation forecasts (c,d) which are statistically merged with the RUC 
numerical forecast (e).  Probability forecasts (f-h) are derived from the extrapolation and RUC forecasts.  
Amounts are in mm, probabilities range 0-1; see color scales.  
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Figure 3. RS-REG forecasts valid 1200-1800 UTC, 5 September 2011, corresponding HPC forecast, and 
StageIV gauge-radar verification.  Probability of exceeding thresholds of 2.5, 25, 50, and 75mm (a-d), and 
QPF amount (mm) (e).  HPC forecast (f) has pattern similar to RS-REG.  Some amounts in excess of 100mm 
were observed (g). Amounts and rates are in mm; probabilities 0-1 (see color scales).
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Figure 4.  Mean observed and forecasted precipitation amounts.  Values 
are for the period April-June 2011.

Figure 5.  Relative frequency of observed precipitation events (black bars) and mean RS-REG 
probability forecasts (red bars) for valid periods (a) 0000-0600 and (b) 1800-0000 UTC.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p.25mm p2.5mm p12.5mm p25mm

Re
la

tiv
e 

fre
qu

en
cy

OBS RS-REG

1800-0000 UTC

0

0.5

1

1.5

2

2.5

00‐06UTC 06‐12UTC 12‐18UTC 18‐00UTC

M
ea
n 
pr
ec
ip
it
ai
on

, m
m

OBS RS‐REG HPC RUC

12



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

00Z 06Z 12Z 18Z

CS
I, 
25

m
m

RS‐REG HPC RUC

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

00Z 06Z 12Z 18Z

CS
I, 
50

m
m

RS‐REG HPC RUC

0

0.005

0.01

0.015

0.02

0.025

0.03

00Z 06Z 12Z 18Z

CS
I, 
75

m
m

RS‐REG HPC RUC

Figure 7. Maximum Critical Success Index (CSI) for RS-REG, HPC, and RUC forecasts, for (a) 
25-mm events, (b) 50-mm events, and (c) 75-mm events.  Maximum CSI value is subject to 
detection of at least 0.25 of the observed events.

Figure 6. Root-mean squared error (a) and rank correlation (b) for precipitation 
amount forecasts; statistics are relative to StageIV verification, April-June 2011.

Table 1.  Fraction of cases with observed precipitation ≥ 25mm, for different ranges of 
RS-REG QPF, given that HPC forecast was ≥ 25mm.  Within this sample, there is a clear 
relationship between the RS-REG QPF and event relative frequency, implying 
information independent of the HPC forecast.
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