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Abstract

The radar-derived refractivity field can be used as a
proxy of near-surface moisture field and has the poten-
tial to improve the forecast of convective initialization.
The refractivity retrieval was originally developed for the
use of single radar, and was recently extended for a net-
work of radars by solving a constrained minimization of
mean-square-errors (MSE). In practice, the number of
high quality clutter returns can be often fewer than the
number of retrieved refractivity points and the retrieval
problem becomes ill-defined. In this work, an emerging
technology of compressive sensing (CS) is proposed to
retrieve refractivity field using a network of radars. It
has been shown that CS can provide optimal solution
for an underdetermined inverse problem if the conditions
of sufficient sparsity and incoherence property are met.
For example, CS has been proven to be advantageous
over other least mean-square-errors (MSE) based meth-
ods if the number of measurements is much fewer than
the dimension of signals to be retrieved.
In this work, the relationship between the refractivity field
and the phases measured from multiple radars is repre-
sented by a linear model. A CS framework with discrete
cosine transform (DCT) was used to solve the inversion.
The application of CS to refractivity retrieval using sin-
gle and multiple radars is demonstrated using simula-
tions. In simulation, the model refractivity field was cal-
culated from numerical weather model. Subsequently,
the radar-measured phases from randomly located clut-
ters were generated by integrating refractivity along the
ray path. The performance of CS was quantified sta-
tistically for various conditions such as the amount of
measurement errors, the number of high quality clutter
returns, and radar locations. Further, the performance
of CS was compared to the method that was developed
previously using a MSE approach with smoothness con-
strain. Our preliminary results have shown that CS can
provide relatively robust and high quality estimates of
refractivity field for most cases
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1. INTRODUCTION

Moisture is one of the critical parameters to improve the
forecast of storm initiation in the warm season. There-
fore, atmospheric moisture must be measured with high
temporal and spatial resolution accuracy that can be
used to predict exact timing and location of convective
initiation [14] . However, high resolution observations of
the moisture field are often limited.
it has been known that refractivity is directly affected by
atmospheric parameters which are pressure, tempera-
ture, and moisture. A technique was developed to esti-
mate refractivity by exploiting the phase of radar signals
from ground clutter using single radar [8] since refrac-
tivity is closely tied to the moisture at warm temperature
[1], It has been suggested that refractivity measured by
weather radar can be used as a proxy for near-surface
moisture field. Observations using weather radar for
near-surface moisture are available per scan approxi-
mately a few minutes and a few kilometers. Low level-
atmospheric refractivity can be represented by radar-
derived refractivity retrieval.
Since the refractivity is a function of temperature and hu-
midity, the phase change of radar’s signals from station-
ary ground targets depend on the refractivity along the
path. Radar-derived refractivity retrieval is implemented
on several research with S, X, C bands operational radar
and feasibility of refractivity retrieval has been demon-
strated in several field [13], [12].
The rapid refractivity retrieval algorithm was devel-
oped for single radar phase measurements from ground
clutters by performing a range derivative operation.
Then, it was demonstrated and investigated using the
phased array radar at National Weather Radar Testbed
(NWRT) [5]. The radar derived refractivity application
to mesoscale and storm scale weather phenomena sur-
veyed and analyzed to study in [3], [2]. It was shown
that the radar derived refractivity has a good agreement
with surface measurements and so provide sufficient op-
erational forecast [14]. Recently, the refractivity retrieval
field estimation model using network weather radar was
derived and verified with simulations and with real data
[10], [9].
The phase measurements from refractivity field are indi-
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cated by a linear model using gridded approach. There-
fore, the estimation of refractivity from these measure-
ments was assumed as an inversion problem and solved
by using constrained least square (CLS) method.
In this work, compressive sensing (CS) technique
[4], [7] is used to reconstruct the refractivity from the
phase measurements by designing the same linear
model. The number of pixels on the rectangular linear
map which is refractivity reconstructed is much higher
than the number of measurements. Therefore, the lin-
ear model becomes underdetermined set of linear equa-
tions [10]. We demonstrated that the two conditions of
sparsity and incoherency, required by the CS, are likely
to be met for the problem of refractivity retrieval. It has
been shown that CS can provide reliable and effective
recovery for underdetermined cases.
The remainder of this paper is organized as follows. In
section 2, formulation of refractivity retrieval with net-
worked radar will be briefly reviewed. A review of pro-
posed compressive sensing algorithm in section 3 and
refractivity estimation using CS and CLS in section 4. re-
fractivity simulation with demonstration of results in sec-
tion 5. Statistical analysis of CS and CLS algorithms
with results will be in section 6. The summary is pre-
sented in section 7.

2. FORMULATION OF REFRACTIVITY RETRIEVAL
WITH NETWORKED RADAR

It is well known that refractivity is closely tied to meteoro-
logical parameters and becomes more depended on the
relative humidity as temperature increases [5] at a sur-
face pressure which is considered as a constant. Given
a stationary target located at range of R from the radar,
the phase of radar signal depends on the integration of
refractivity along the ray path. Estimation of refractivity
field is made by exploiting phase difference of radar sig-
nals from a stationary ground target at two different time
of observations. In this work, we focused on the refrac-
tivity changes (δN) from consecutive scans. Moreover,
we assumed the phase wrapping was dealt with sepa-
rately. However, a solution was proposed to avoid from
phase wrapping and unwrapping issue using the differ-
ences in phase between two different times [8].
The refractivity estimation algorithm was proposed for
multiple radars [10] and implemented [9]. In the sys-
tem, we assumed that there are J stationary targets with
K radars in the measurement field, then the number of
measurement is L= KJ. Then, all the phase differences
can be formed in a measurement vector with size of L
by 1. When the number of targets are high enough, then
the probability of the crossing L paths in the field will be

high and so the refractivity field can be reconstructed
with high probability.
It is assumed that refractivity field is parameterized with
a finite set of variables and the measurement field is
gridded into M x N pixels (MN=P) and since the refrac-
tivity field is continuous, refractivity index value in each
pixel is divided by 10 x 10 sub-squares and assumed to
be a constant. Eventually, using this gridded approach
with finite dimension, the measurement of phase differ-
ences are represented in a linear model [10].

Φ = Hη + e (1)

where Φ is a column vector of measured phase differ-
ences with a size of L by 1, η is a column vector form of
refractivity difference δN with a size of P by 1, H is linear
operator to represent the path-integrated measurement
with size of L by P, and e is the measurement errors with
size of P by 1.
The measurements are vertically ordered in the mea-
surement vector based on the path integration se-
quence. Measurement matrix (H) is obtained by using
ray path-integrated over the field in a linear form. Note
that each row has only one measurement coefficients
and it is in a linear model which can be applied to sin-
gle radar case (K=1). On the other hand, the number
of measurements decrease compared to a multi-radar
case for the same number of targets. The refractivity
field estimation discussed for single radar in [8], [5] us-
ing different approach and for multi-radar in [10] using
constraints.
The phase measurement was defined in a linear form
with the refractivity changes in equation (1). Now, the
refractivity retrieval η is to estimate from Φ with L mea-
surement. In general sense, L is much smaller than
P and so the H matrix is sparse, it is ill-posed condi-
tion. Hence, direct inverse of H matrix is not exist and
the direct least square solution cannot be applied. A
constrained optimization method was used to solve this
problem [10]. On the other hand, for both single and
networked radars cases, CLS can be applied to solve
the underdetermined inverse problem of (1) by including
a smoothing constraint. In this work, the compressive
sensing technique is applied to solve the inverse prob-
lem to recover refractivity with the goal of robust estima-
tion.

3. PROPOSED ALGORITHM CS

Mathematical theory of compressive sensing (CS) has
been studied in the literature of Information Theory and
Approximation Theory as an abstract general setting [4],
[7] and it is successfully applied to rapid MRI imaging
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and its details were presented [11].
In most cases, a signal or image can be reconstructed
using much less number of measurements comparing to
nominal number of measurements are needed. There-
fore, CS relies on two principles that are sparsity and
incoherence. CS can provide an optimum and unique
solution using nonlinear L1 norm if the refractivity field is
sparse and incoherent with the measurement basis. On
the other hand, most of finite dimensional signals are
compressible in its original domain or a known trans-
form domain Ψ. That is, a signal can be expressed
with sparse transform coefficients in the proper basis
and number of transform coefficients are relatively small
against to nonzero values.
Hence, refractivity fields must have a sparse representa-
tion in the proper transform domain to be reconstructed.
These two conditions for refractivity retrieval are dis-
cussed in the following. The sparsity can be achieved in
the image domain or after a transformation. In this work,
the discrete cosine transform (DCT) was used and can
provide promising results. So, we have the discretized
model with gridded array of P pixels (M x N dimension)
and refractivity can be written as

η = Ψx (2)

where Ψ is orthonormal basis (such as DCT) and has P
x P dimension matrix with ψ1, ..., ψP as columns. η is
vectored form of the pixels with size of P x 1 and x is the
transform coefficients of the DCT with S largest nonzero
values.
Figure 1 demonstrates that the model reflectivity change
can be represented reasonably well by using only 103
significant coefficients out of 4096 coefficients, which
suggests that the refractivity field is sparse in the DCT
domain. In Figure 1, the model field of refractivity
changes is shown on the left panel with 4096 pixels (64
by 64 km with a 1 km grid spacing) and the first 150
DCT transformation coefficients are shown in the middle
panel after sorting. The refractivity obtained by the in-
verse DCT using the largest 103 significant coefficients
is shown is on the right panel. It is evident that the im-
age can be represented well by using only 2.51 % of the
coefficients.

In other words, only 2.71 % of the coefficients are suf-
ficient to represent the model refractivity. Incoherence
gives the relationship between sampling measurement
basis H and sparse representation basis Ψ. in other
words, incoherence measures the the smallest correla-
tion between any two elements of H and Ψ. The coher-
ence pairs between the transformation basis and mea-
surement basis is defined in the following equation

µ(H,Ψ) =
√
P max(|〈Hi, ψj〉|) 1 ≤ i, j ≤ P

(3)
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Figure 1: The model field of refractivity changes is
shown on the left panel with 4096 pixels (64 by 64 km
with a 1 km grid spacing) and the first 150 DCT transfor-
mation coefficients are shown in the middle panel after
sorting. The refractivity obtained by the inverse DCT us-
ing the largest 103 significant coefficients is shown is on
the right panel. It is evident that the image can be rep-
resented well by using only 2.51 % of the coefficients

The coherence will be large when the pair of (H,Ψ) in-
cludes correlated elements, otherwise it will be small.
The range of coherence is [1,

√
P ]. CS requires the co-

herence as low as possible within a given range. For our
case, the coherence between the measurement basis of
H from the target distribution in Figure 1 and the DCT
transformation is 11.308 given the range between 1 and
64. This suggest that the DCT transform can provide
low coherence with the measurement matrix.
Moreover, it must be avoided that the samples from
linear combinations are not focused on a few sparse
sparse coefficients. In this work, CS is applied to es-
timate refractivity field from linear combinations of mea-
surement which are the integral of the refractivity differ-
ences along each path between radar and targets. We
expect in this framework that CS seems to able to make
accurate recovery of refractivity fields from small subset
of phase change measurements with the limited number
of targets. We claim that the linear model of the refrac-
tivity is met for the CS principles to reconstruct the signal
accurately.

4. REFRACTIVITY RECONSTRUCTION

The phase measurements are obtained linearly from the
product of the measurement basis against the refractiv-
ity. Now, the refractivity is wanted to reconstruct using
this linear form that the number of measurements are
much less than the number of pixels and so there is no
unique solution for this inverse problem and it is highly
ill-posed.

Φ = Hη + e, i ∈ L and L < P (4)

CS requires nonlinear reconstruction of the refractivity
field which is convenient to the CS setting. Moreover,
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CS searches the unique solution in the sparse domain
using the Ψ transformation matrix. Because sparse sig-
nals have small l1-norm value. The nonlinear l1-norm
reconstruction is obtained by solving the following con-
straint optimization problem

min||Ψ′η̂||1 subject to ||Φ−Hη̂||2 < β (5)

Where β bounds the amount of noise in the phase
measurement and usually set below the expected noise
level. Ψ is the matrix operator to get the discrete co-
sine transform (DCT) of the refractivity images. The
threshold level of the sparse representation is selected
based on the estimated noise level [6]. Selecting suit-
able sparse representation helps to achieve a sparse-
ness and incoherence. Thus, the signal is concentrated
on randomly and relatively small set in the sparse trans-
formation basis.
The role of l1-norm minimization is the most significant
feature for the proposed approach. The CS reconstruc-
tion is used nonlinear approximation as the measure-
ments are linear. The inverse DCT operator Ψ′ takes
an P-point transform of the candidate image η̂ and the
transform coefficients are obtained in a vector form. l1-
norm of the vector is only the summation of the magni-
tudes and it selects the minimum value among the iter-
ations since l1 norm of sparse signal is often small.
The constraint convex optimization problem could be
written as unconstraint problem in Lagrangian form

min||Φ−Hη̂||22 + θ||Ψ′η̂||1 (6)

where theta is regularization parameter that determines
the trade off between the sparseness and data fidelity.
Selecting the parameter theta appropriately, the solution
of 5 will be exactly to 3. The non-linear conjugate gradi-
ents and backtracking line search [11] is implemented
to solve the unconstraint optimization problem.
On the contrary, l2 norm minimization is generally used
for regularization and the large coefficients are penal-
ized severely. Thus, l2 norm results become over-
smooth. Besides, using the regularization, it often
needs to apply a smoothness function with reconstruc-
tion which is called constraint least square (CLS) tech-
nique [10]. In addition, the refractivity filed is retrieved
using the phase measurement by applying CS and CLS
techniques for single radar and networked radars.

5. REFRACTIVITY SIMULATION

The application of the CS to refractivity retrieval was im-
plemented for a single radar and networked radars over
the simulation domain with size of 64 by 64 km. The

model reflectivity fields (η) were obtained from a nu-
merical weather model from 19-May-2010 from 2000 to
2115 UTC in Oklahoma. The model field varies from -
3.98 to 1.34 N units. Subsequently, zero mean Gaussian
noises with desirable standard deviation were added to
refractivity field in the simulation of radar phase mea-
surements. In CS, the refractivity was estimated from
the minimization of the nonlinear L-1 norm of the trans-
formation coefficient subject that the L-2 norm of errors
is small.
The first case is designed for a single radar refractiv-
ity retrieval that the radar location is on the left at the
bottom of the domain (-32, -32) km. Approximately 400
clutter targets are generated randomly on the simulation
domain and their locations are denoted by ”x ” in Figure
2. An example of the model refractivity changes from
the numerical weather prediction model is shown on the
left panel of Figure 2 and the simulated phase measure-
ments using (1) is shown on the right panel after spatial
interpolation.
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Figure 2: (Left) Refractivity differences and (right) phase
measurements using one radar located at (-32, -32) km.
The location of 400 ground clutter is denoted by x in the
right panel.

For a single radar setup, the refractivity field recovered
using CS and CLS techniques with1N unit noise and
the results are shown in Figure 3. The refractivity field
was estimated by CLS and CS with 400 phase measure-
ments and 1N-unit error. It is evident that both CS and
CLS can grossly reconstruct the refractivity changes by
comparing to the model as shown on the left panel of
Figure 2. Moreover, CS and CLS reconstructed images
with RMSE of 0.17 and 0.24, respectively.
Additionally, it is assumed that the phase wrapping and
unwrapping is performed without error for both algo-
rithms. The refractivity is reconstructed using 400 phase
measurements within the domain with 1 x 1 km grid
resolution for CS and CLS. The measurement ratio of
the unknown number of pixels, L=400 and P=4096, is
around 10%.
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Figure 3: (Left) Refractivity differences and (right) phase
measurements using one radar located at (-32, -32) km.
The location of 400 ground clutter is denoted by x in the
right panel.

The reconstructed refractivity changes using CS and
CLS for a network of three radars are shown on the left
and right panels of Figure 4. The additional two radars
are located at (-32, 32) km and (32, -32) km. It is evident
that both CS and CLS provide improved performance
using three radars. As the number of radars increases,
the number of measurements increases and the num-
ber of paths passing through a given pixel is likely to
increase. Moreover, CS provides better reconstruction
than CLS for this case
It is clearly seen from the Figures using single and net-
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Figure 4: The refractivity retrieved by CLS (left panel)
and CS (right panel) using 3 radars and 400 ground clut-
ters with 0.5 N unit error. The radars are located at the
left and right lower corners and at the top left. Increas-
ing the number of radars, the number of measurements
and crossing paths are increased.

worked radars that both techniques can recover the δN
field that is consistent with the model. CS refractivity re-
trieval performs better than CLS against noisy and has
better suppression for the noise. CLS is more sensitive
to noise than CS and so the reconstructed refractivity
field from CLS is more noisy. Both algorithms have a
more error on the boundary of the domain and for the
fair comparison the edges at the boundary are omitted.
The root mean square error (RMSE) is used to analyze

the performance of algorithms.

RMSE =

√√√√ 1

P

M∑
i=3

N∑
j=3

[δN(i, j)− δN̂(i, j)]2 (7)

where δN̂ is reconstructed refractivity change and
M=N=62 is the number of pixels in one direction, and
P=MN as total number of pixels. Since the fair compari-
son, two rows and columns of edges were omitted from
four side of the reconstruction and so the RMSE calcu-
lation is start i=j=3 to 62. As a result, the RMSE of CS
and CLS is 0.15 and 0.27, respectively.

6. STATISTICAL ANALYSIS

In order to investigate robustness of the CS and CLS,
various amount of noise were added to the model. For
statistical analysis, 20 realizations were performed for
each given radar configurations (1-3 radars), amount
of noise, and number of measurements. Root mean
square error (RMSE) between the reconstructed and the
model were used to compare the performance of the CS
and CLS.
The mean and SD of the RMSE from CS and CLS as a
function of amount of noise are shown in Figure 5 for
1, 2, and 3 radars configurations. The number of phase
measurements was obtained from 400 ground clutters
with a good quality. In order to make a fair comparison
due to the boundary problems, 94 % of the images are
used to compare.

For single radar and no noise case, CS has slightly
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Figure 5: TThe mean and SD of RMSE from the CS
(solid line) and CLS (dash line) versus N-unit errors us-
ing single radar and networked radars with 400 targets.
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higher RMSE than CLS. However, if noise is considered,
CS has the lowest RMSE and small SD of variations for
all the different amounts of noise. CLS has the highest
SD of RMSE for 2 N-unit error but CS has more stable.
The slope of CS is much lower than CLS between no
noise and 0.5 N-unit error and also, for other cases. For
networked radars, CLS and CS have quite similar RMSE
for no noise case. However, when noise was added,
CLS produce more noise results and so the RMSE be-
come much higher than CS. The slope of CS is more
lower and SD of CS is much stable than CLS. Both al-
gorithms have the lowest RMSE for 3 radars configura-
tion, as comparing the other two configurations. SD and
mean of the RMSE decrease as increasing the number
of radars since the number of measurement and cross-
ing the number of pixels increase simultaneously.

7. SUMMARY

In this work, the applications of CS to refractivity re-
trieval was demonstrated using numerical simulation for
a single radar and networked radars. Performance of
CS and CLS was evaluated statistically and compared
using RMSE. it is evident that CS and CLS can recon-
struct the refractivity field consistently, while CS has the
best performance with the lowest RMSE for all the three
radar configurations and noisy cases. The results also
suggest that CS is less susceptible to noise compared
to CLS .
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