
1. INTRODUCTION 

Nowcasting precipitation has traditionally been done 

using radar reflectivity data. Recent research, however, 

indicates that using specific differential phase (Kdp) has 

several advantages over using reflectivity for estimating 

rainfall. This paper presents an evaluation of 

nowcasting rainfall fields based on Kdp estimates using 

the Collaborative Adaptive Sensing of the Atmosphere 

(CASA) quantitative precipitation estimation and 

nowcasting methodologies and approximately 27 h of 

composite X-band radar data. The results show the 

predictability of Kdp-based rainfall estimates to be about 

twice that of reflectivity-based rainfall estimates in terms 

of cross-correlation and equitable threat score 

considering radar-based estimates as the scoring 

reference. The benefits of quantitative precipitation 

nowcasting using Kdp-based estimates were shown to 

diminish with increasing lead time out to 20 min when 

considering rain gauge cross-validation.    

2. RAINFALL ESTIMATION USING SPECIFIC 

DIFFERENTIAL PHASE 

 Specific differential phase (Kdp), defined as one-half 

the range (r) derivative of the two-way differential phase 

(Фdp), 
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has several advantages over using reflectivity for  

estimating rainfall (Seliga and Bringi 1978; Jameson 

1985; Bringi and Chandrasekar 2001). Since Фdp is a 

dual-polarized radar product and not a power 

measurement, rainfall estimates derived from Kdp are 

not susceptible to radar calibration error, attenuation, or 

beam blockage and are less affected by anomalous 

propagation (Brandes et al. 2001). Kdp-based rainfall 

estimates are also less sensitive to variations in drop 

size distributions (Sachidananda and Zrnić 1987) and to 

the presence of dry, tumbling hail (Balakrishnan and 

Zrnić 1990; Aydin et al. 1995). 

The estimation of Kdp involves approximating the 

slope of Фdp profiles, which is known to be a noisy and 

unstable computation. Methods for estimating Kdp 
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traditionally involved piecewise fitting to predict the local 

trend, where any phase sample deviating too far from 

this trend was attributed to phase wrapping. 

Approaches were developed to then reduce the 

variance of Kdp estimates, including range filtering, 

linear fitting, or both (Golestani et al. 1989; Hubbert et 

al. 1993). These techniques reduce the peak estimated 

Kdp values, which can introduce bias, and afford limited 

adaptive capability to follow steep slopes within intense 

rain cells and reduce the estimation variance in the rest 

of the segments simultaneously. 

Wang and Chandrasekar (2009) presented an 

adaptive scheme to estimate Kdp, which was shown to 

have better range resolution in intense rain cells to 

better capture small-scale variability. A regularization 

technique is used to control the balance between 

estimation bias and variance and incorporates 

adaptivity to keep up with large gradients of Фdp. Wang 

and Chandrasekar (2009) showed Kdp fields estimated 

using this approach matched the structure of a single 

storm observed by the CASA X-band radar network 

better than previous approaches and that negative Kdp 

values were largely eliminated. Wang and 

Chandrasekar (2010) showed Kdp-based rainfall 

estimates using this method compared favorably to 

gauge measurements. 

3. NOWCASTING METHODOLOGY 

The Dynamic and Adaptive Radar Tracking of Storms 

(DARTS) nowcasting model (Ruzanski et al. 2010) was 

used to estimate motion between sequences of 

estimated rainfall fields. DARTS is built upon the 

general continuity equation describing the flux and 

evolution of a precipitation pattern represented by a 

temporal sequence of radar reflectivity fields, F(x, y, t), 

given by, 

 

( , , ) ( , ) ( , , )

                      ( , ) ( , , )

F x y t U x y F x y t
t x

V x y F x y t
y

∂ ∂
= −

∂ ∂
∂

−
∂

 (2) 

 

where U(x, y) is the east-west component of the velocity 

field and V (x, y) is the north-south component of the 

velocity field. DARTS estimates precipitation pattern 

motion by representing Eq (2) as a discrete 

spatiotemporal linear model, where the Discrete Fourier 

Transform coefficients of U(x, y) and V (x, y) are 

estimated using linear least squares estimation 
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(Ruzanski et al. 2010). Advection is performed using a 

sinc kernel-based method described by Ruzanski et al. 

(2010).  

4. DATA 

 Approximately 27 h of data (1593 data frames) 

collected during the 2009 CASA IP1 experiment 

(Brotzge et al. 2005) were used for evaluation [Table 1]. 

Data were collected from 2-degree scans and projected 

and merged onto Plan Position Indicator (PPI) grids with 

0.5 km spacing using the technique described by Liu et 

al. (2007). The temporal resolution of the data is 1 min. 

Rainfall rate fields (R) were estimated from Kdp 

according to (Wang and Chandrasekar 2010), 

 
0.791
dp18.15R K=  (3) 

 

where Kdp has units of degree km
−1

 and R has units of 

mm h
−1

. The convective (non-tropical) or “default” Z-R 

relationship currently used by WSR-88D radars (Fulton 

et al. 1998), 

 
1.4300Z R=  (4) 

 

where Z has units of mm
6
 m

−3
 and R has units of mm 

h
−1

, was used to create the reflectivity-based rainfall 

estimates as a reference for assessing the nowcasting 

characteristics of Kdp-based rainfall estimates. 

Rain gauge cross-validation was performed using 

data collected by gauges located within the Little 

Washita River Experimental Watershed (LWREW), 

which is managed by the U. S. Department of 

Agriculture (USDA) Agricultural Research Service 

(ARS) as part of the Little Washita Micronetwork (Allen 

and Naney 1991). The LWREW covers an area of 611 

km
2
 and is situated in the center of the CASA IP1 test 

bed allowing for overlapping coverage from almost all 

the CASA IP1 radars (Figure 1). Data from 20 unheated 

tipping-bucket rain gauges deployed within the 

watershed were considered, which measure rainfall in 

discrete bucket tips of 0.254 mm per tip. The gauge 

data were archived as running rainfall accumulation in 

5-min intervals over a 24-h period. Piecewise Cubic 

Hermite Interpolating Polynomial derivation was used to 

temporally align the radar and gauge data and estimate 

rainfall rate from measured accumulation (Fritsch and 

Carlson 1980). 

5. ASSESSMENT METHODOLOGY 

Nowcasting performance was assessed considering 

radar-based estimates and rain gauge observations as 

reference for predicted rainfall fields. In operational use, 

the particular Kdp-R and Z-R relationships used will 

cause large differences in rainfall estimates 

(Anagnostou and Krajewski 1998). 

Table 1. Summary of precipitation event data collected 
during the 2009 CASA IP1 experiment used for 
nowcasting performance evaluation. 

Event no. Start time Duration (h) Type 

1 0015 UTC 10 Mar 4.75 Line 

2 0027 UTC 31 Mar 2.20 Line 

3 0858 UTC 02 May 6.75 Multicell 

4 1423 UTC 05 May 3.15 Multicell 

5 0907 UTC 11 May 5.85 Multicell 

6 0200 UTC 14 May 5.75 Supercell 

 

 

 

Figure 1. The distribution of ARS Micronet gauge 
network within the IP1 network coverage area. A current 
operational gauge station is denoted by an ‘x’ on the left 
and labeled with station IDs on the right [from Wang 
and Chandrasekar (2010)]. 

 

Because validation of radar-based rainfall estimates is a 

difficult problem in itself and methods of uncertainty 

determination are not well established (Ciach and 

Krajewski 1999; Anagnostou and Krajewski 1999), 

nowcasting assessment was performed relative to 

radar-based rainfall estimates in addition to rain gauge 

cross-validation. 

The cross-correlation coefficient (CC) and Equitable 

Threat Score (ETS) were used to assess nowcasting 

performance relative to radar-based rainfall intensity 

estimates. The CC is defined as, 
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where N is the total number of 0-min rainfall estimates, 

O, and forecasts, F, in the estimated rainfall field 

corresponding to each respective rainfall estimator. 

 The ETS is defined as, 
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R
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where A represents the intersection of the areas in the 

data field over which the event was forecast and 

subsequently occurred (i.e., “hit”), B represents the area 

over which the event was forecasted and subsequently 

did not occur (i.e., “false alarm”), C represents the area 

over which the event occurred but was not forecast to 

occur (i.e., “miss”), D represents the intersection of the 

areas over which the event was not forecast to occur 

and did not occur (i.e., “correct negative”), and AR is an 

estimate of the number of hits due to random chance, 

given by, 
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In this study, an “event” is defined as the presence of a 

rainfall value greater than or equal to 5 mm h
−1

 located 

within a 1 km × 1 km area.  

Normalized Bias (NB), Normalized Standard Error 

(NSE), and the CC were used to assess nowcasting 

characteristics of 1-h rainfall accumulation fields relative 

to rain gauge observations. The NB and NSE are 

defined respectively as, 
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where RR is the radar estimate, RG is the gauge 

observation, and the brackets indicate the sample 

(spatial) average. The CC is defined in Eq (5) and 

computed between radar measurements chosen at the 

location of rain gauges and the rain gauge observations 

temporally interpolated to the time of the estimated or 

predicted rain rate fields. 

6. RESULTS 

 Example rainfall rate fields estimated using Eqs (3) 

and (4) and corresponding 10-min predicted rain rate 

fields from the 31 Mar event are shown in Figure 2. This 

figure depicts the variability in the structure of rainfall 

fields estimated by Kdp and reflectivity and their 

predictions. 

 The average MAE, ETS, and CC scores considering 

radar-based rainfall estimates as the reference are 

shown in Figure 3. The results show that rainfall fields 

estimated from Kdp exhibit higher ETS and CC values 

with increasing lead time vs rainfall estimated from 

reflectivity.  

 

Figure 2. Rain rate fields corresponding to 0055 UTC 31 
Mar 2009: (a) initial estimate and (b) corresponding 10-
min prediction of rainfall field derived according to Eq 
(3), (c) initial estimate and (d) corresponding 10-min 
prediction of rainfall field derived according to Eq (4). 

   

 

Figure 3. Comparison of nowcasting performance using  
(a) CC, and (b) ETS scores and radar-based estimates 
as scoring reference. 

 



Using values of ETS = 0.3 and CC = 1/e as estimates of 

predictability (Germann and Zawadzki 2002), the 

predictability of Kdp-based rainfall estimates is shown to 

be approximately twice that of reflectivity-based 

estimates using radar-based rainfall estimates as the 

scoring reference. 

The average NB, CC, and NSE scores considering 

rain gauge observations as the scoring reference are 

shown in Figure 4. Figure 4 shows Kdp-based rainfall 

estimates to be more positively biased (with less overall 

bias) vs reflectivity-based estimates throughout the 

nowcast period, with all biases decreasing with 

increasing lead time. The CC is shown to be higher for 

Kdp-based rainfall estimates vs reflectivity-based 

estimates throughout the nowcast period suggesting 

more coherence in the Kdp-based rainfall estimates with 

increasing lead time.  NSE scores are also shown to be 

lower throughout the nowcast period for Kdp-based 

rainfall estimates vs reflectivity-based estimates. 

Collectively, these results suggest the benefits of using 

Kdp for quantitative precipitation estimation diminish with 

increasing lead time. 

7. CONCLUSIONS AND FUTURE WORK   

Estimating rainfall from Kdp has several advantages 

over using reflectivity. Kdp estimates are not susceptible 

to radar calibration error, attenuation, or beam blockage 

and are less affected by anomalous propagation. 

Rainfall estimates derived from Kdp are also less 

sensitive to variations in drop size distributions and to 

the presence of dry, tumbling hail than those derived 

from reflectivity. 

This paper presented a study assessing the 

characteristics of nowcasting rainfall fields derived from 

Kdp using the method presented by Wang and 

Chandrasekar (2009). This method has been shown to 

produce more accurate and robust estimates than 

previous methods to estimate Kdp. Approximately 27 h 

of X-band radar data collected during the 2009 CASA 

IP1 experiment was considered for evaluation and the 

CASA nowcasting methodology was used to generate 

predictions of Kdp- and reflectivity-derived rainfall 

products out to 20 min. Continuous and categorical 

scores were used to assess nowcasts relative to their 

respective radar-based estimates and rain gauge 

observations. The results showed that the predictability 

of rainfall fields derived from Kdp was about twice that of 

reflectivity-based estimates in continuous and 

categorical senses. The scores based on rain gauge 

cross-validation suggested the benefits of using Kdp for 

quantitative precipitation estimation diminish with 

increasing lead time. Overall, these results illustrate the 

potential for improving quantitative precipitation 

forecasting using Kdp-based rainfall estimates. 

Future work should consider comparison of Kdp-

based rainfall estimates to reflectivity-based rainfall 

fields derived from a collection of several Z-R 

relationships. A larger data set and various geographic 

locations should be considered as well. 

 

Figure 4. Comparison of nowcasting performance using 
(a) NB, (b) CC, and (c) NSE scores and rain gauge 
observations as scoring reference. 
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