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Abstract 23 

Upper-level (200 hPa) velocity potential (VP200) is useful in identifying areas of rising 24 

or sinking atmospheric motions on varying temporal scales (e.g., weekly, seasonal, interannual) 25 

especially in the global tropics. These areas are associated with enhancement (rising motion) or 26 

suppression (sinking motion) of tropical convection and subsequent weather phenomena 27 

dependent on these processes (e.g., tropical cyclones). This study employed commonly used 28 

global weather reanalysis datasets to calculate and compare VP200 on interannual through 29 

multidecadal temporal scales and quantify any differences that existed between them from 1959 30 

to 2020 over four key regions of tropical variability (Equatorial Africa, Amazon Basin, 31 

Equatorial Central Pacific, and Equatorial Indonesia). To supplement this analysis, the highly 32 

correlated variables to VP200 of outgoing longwave radiation (OLR) and daily precipitation rate 33 

were used and directly compared with independent OLR and precipitation datasets to determine 34 

the reanalysis’ level of agreement with the independent data. The ECMWF ERA5 held the 35 

highest agreement to these data over all regions examined and was reasoned to have the highest 36 

confidence in accurately capturing the variability of VP200 fields for the study period. 37 

Confidence was decreased in the usefulness of the NCEP/NCAR Reanalysis 1 as it consistently 38 

performed poorly over much of the study domain. The results of this study also emphasized the 39 

usefulness in ensemble-based approaches to assess climate variability and understanding of 40 

potential biases and uncertainties that are inherent in these data sources. 41 

 42 
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Significance Statement 45 

 Global weather reanalysis datasets are vital in today’s research investigating climate 46 

change and variability because they provide the most complete picture of how the atmosphere 47 

has varied over time. This study examined how well the history of upper-level velocity potential 48 

(VP200) was captured in commonly used reanalysis datasets over four key regions of tropical 49 

variability. The variable of VP200 is useful in identifying areas of rising or sinking atmospheric 50 

motions which are associated with enhancement (rising) or suppression (sinking) of tropical 51 

convection and subsequent weather phenomena dependent on these processes (e.g., tropical 52 

cyclones). The results of this study emphasized the usefulness of ensemble-based approaches in 53 

assessing climate variability and understanding potential biases and uncertainties that can be 54 

found in individual data sources. 55 
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1. Introduction 64 

For much of the twentieth century there were no comprehensive global atmospheric 65 

reanalysis datasets capable of tracking the behavior of large-scale atmospheric motions at longer 66 

temporal scales. However, this changed with the inception of the National Centers for 67 

Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) 68 

Reanalysis 1 (R1) dataset which inspired a new generation of study into the global circulations 69 

and their variability over time (e.g., Kalnay, 1996, Chelliah and Bell, 2004, Tanaka et al., 2004, 70 

and Kinter et al., 2004). Atmospheric reanalysis datasets provide the most complete picture of 71 

past weather and climate available today. These datasets are constructed by blending 72 

observations using short-range forecasts of past weather and satellite data using modern weather 73 

modeling data assimilation capabilities which mimic day-to-day weather forecasts. This enables 74 

the reanalysis data to fill in gaps and create a more spatially consistent product over time. 75 

Since the variability of climate teleconnection patterns are observed on longer temporal 76 

scales (e.g., interannual, decadal), it can be challenging to fully understand their scope and 77 

impact in real-time. Applications that have made climate teleconnections in the tropics more 78 

relevant on smaller temporal scales have been through the establishment of a relationship 79 

between 200 hPa velocity potential fields (VP200), which describes the magnitude of upper-level 80 

atmospheric divergence, and the variability of tropical overturning circulations (TOCs) 81 

(Trenberth, Stepaniak, and Caron, 2000; Emanuel, Neelin, and Bretherton, 1994). Through this 82 

relationship, subsequent literature discussed the relationship between VP200 and tropical 83 

precipitation. These applications increased interest in better understanding how climate 84 

teleconnections impact the magnitude and variance in tropical precipitation over time (Zhang, 85 



Wallace, and Battisti, 1997; Higgins et al., 2000). These findings have brought about renewed 86 

research interest regarding how the evolution of the Global Walker Circulation (GWC) and 87 

subsequent teleconnections impact real-time weather in the tropics (Zaitchik, 2017; Zhang and 88 

Wang, 2021). Therefore, by analyzing how well VP200 captures the variability of the GWC and 89 

other TOCs, and their impact on tropical precipitation, these findings aim to emphasize the value 90 

in further exploring the intersection of climate teleconnections and tropical meteorology. 91 

Since the establishment of the NCEP/NCAR R1 dataset, significant progress has been 92 

made in better understanding the evolution of Earth’s atmosphere on longer temporal scales 93 

(Held, 2019). This study intends to revisit the topic of how tropical circulations are tracked 94 

through the variability of VP200 and incorporates commonly used weather reanalysis datasets 95 

(e.g., ECMWF ERA5, JRA-55, MERRA-2) to create an ensemble in climatological means and 96 

compare to the NCEP/NCAR R1 dataset’s VP200. With the NCEP/NCAR R1 dataset being the 97 

primary data source for much of the early foundational literature regarding this topic, it is 98 

imperative that these findings are reproducible across other datasets, and that any observed 99 

marked differences are noted. By conducting this analysis, further research can then be more 100 

confidently conducted regarding its applications to climate teleconnections, tropical cyclone 101 

activity, and tropical convection using ensemble-based approaches or the better performing 102 

weather reanalysis datasets identified (Hersbach et al., 2020). 103 

This research aims to provide a climatological analysis of VP200 for the 1971 to 2000, 104 

1981 to 2010, and 1991-2020 climate periods as well as analyze the variability of the anomaly 105 

fields from 1959 through 2020. Variability of the TOCs are a primary topic of interest because it 106 

is coupled to many aspects of tropical atmospheric phenomena (e.g., El Niño-Southern 107 

Oscillation (ENSO), monsoonal circulations, and tropical cyclones) (Arkin, 1982; Back and 108 



Bretherton, 2006). The primary circulations that drive convective activity in the tropical regions 109 

are the Hadley circulation (meridional), Global Walker Circulation (zonal), and monsoonal 110 

circulations such as the Indian monsoon (Gill, 1980; Held and Hou, 1980; Walker, 1930; Hsu 111 

and Plumb, 2000). In this study, varying temporal scales (e.g., running 1-year, 5-year, and 10-112 

year means) were used to examine how VP200 captures climate variability in the tropics using 113 

several commonly used global weather reanalysis datasets. The interdecadal (both 5 and 10-year) 114 

temporal scale will filter the VP200 to primarily focus on the signal associated with leading 115 

TOCs, primarily the Global Walker Circulation (e.g., rising cells over the Maritime Continent, 116 

Amazonian Monsoon region, and African Continent, sinking cells over the eastern Pacific, 117 

eastern Atlantic, and Indian Ocean). Prior literature found that these circulations can be defined 118 

by their areas of upper-level divergence and convergence in the horizontal (Trenberth, Stepaniak, 119 

and Caron, 2000). This specific attribute is captured by velocity potential (χ) which is defined as 120 

a scalar field that describes the divergent, irrotational component of the horizontal velocity field 121 

(American Meteorological Society, 2022). In this case, the divergent wind measures the 122 

spreading out of the flow: 123 

𝑉⃑ 𝑑𝑖𝑣 = 𝛻𝜒  124 

Equation 1. Atmospheric divergent wind (m/s) as it relates to velocity potential (105 m2/s) (Krishnamurti, 1971).  125 

The specific component of the wind vector represents the gradient of the velocity 126 

potential which uses the horizontal wind vector at the 200 hPa level (Krishnamurti, 1971). 127 

Therefore, VP200 is proportional to divergence where areas of positive (negative) VP200 are 128 

associated with convergence (divergence) aloft and subsequent subsidence (rising motion). 129 

With the usefulness of VP200 in depicting the intensity and size of atmospheric 130 

divergence and convergence aloft, further studies were conducted in understanding how these 131 



extrema in VP200 were associated with variability in tropical precipitation via intraseasonal 132 

oscillations (e.g., Madden-Julian Oscillation) and their inherent association to the TOCs (Lau, D. 133 

E. Waliser, and D. Waliser, 2005; Jiang et al., 2020). 134 

Using these dynamical atmospheric properties, it has been established in prior literature 135 

that subsidence (rising motion) is associated with suppression (enhancement) of convection 136 

(Holton, 2004). Therefore, the use of VP200 was found to be a valid proxy for tracking the 137 

suppression and enhancement of tropical convection at varying temporal scales which has 138 

provided numerous applications for VP200. 139 

2. Applications of VP200 140 

2.1. Subseasonal to Interannual Temporal Scales 141 

The versatility of VP200 has been shown to be useful in the tracking and prediction of 142 

tropical climate oscillations at shorter temporal scales in addition to the longer temporal scales. 143 

Such oscillations include the Madden-Julian Oscillation (MJO) which is characterized as an 144 

oscillation in trade winds and surface fluxes which enhance, or suppress, tropical convection at 145 

an average periodicity on the order of 30-60 days (Madden and Julian, 1971; 1972). Tracking the 146 

MJO is an important aspect of understanding and forecasting high-frequency variability in 147 

tropical convection and subsequent tropical cyclone activity (Roundy and Schreck III, 2009; 148 

Roundy, Schreck III, and Janiga, 2009; Ventrice et al., 2011). In addition to its short-term 149 

applications, prior studies have found MJO behavior has a strong connection to interannual 150 

variability associated with ENSO and the low-frequency variability observed with the TOCs 151 

(McPhaden et al., 2006; Hendon, Wheeler, and Zhang, 2007; Roundy et al., 2010; Roundy, 152 

2015). 153 



Prior methods had been employed by Wheeler and Hendon (2004) to create a tracking 154 

algorithm using Empirical Orthogonal Functions (EOF) for outgoing longwave radiation (OLR) 155 

and zonal winds (at 850 hPa and 200 hPa) to monitor the behavior of the MJO which is 156 

commonly known as the Real-time Multivariate MJO (RMM) diagram. With this, VP200 was 157 

found to be a valid replacement for OLR in the RMM algorithm and was more effective at 158 

retaining consistent MJO tracking across the tropical Pacific (Ventrice et al., 2013).  159 

In addition to these studies, prior literature has also examined the relationships of 160 

precipitation, OLR, and VP200 between reanalysis datasets using smaller temporal domains 161 

(e.g., 1980-93) with notable disagreements that raise further questions regarding their accuracy 162 

and increase the motivation for this study (Newman, Sardeshmukh, and Bergman, 2000). 163 

2.2. Decadal and Multidecadal Temporal Scales 164 

The VP200 literature also helped identify the existence of multidecadal regimes in which 165 

the branches of the GWC vary (Chelliah and Bell, 2004; Tanaka et al., 2004). While the branch 166 

that encompasses the Pacific Walker circulation remains the most dominant feature in the overall 167 

background state, the weaker rising cells over South America and Africa have more notable 168 

variations over time in the reanalysis (Chelliah and Bell, 2006). This variability has had 169 

significant consequences in multidecadal climate over these regions resulting in significant 170 

periods of drought and/or flooding. These variations are largely driven by fluctuations in sea 171 

surface temperatures and land-atmosphere interactions and thus tracking these variations in near 172 

real-time is a possibility as understanding of the anthropogenic and natural mechanisms driving 173 

the TOCs increases. For instance, cooling of the eastern tropical Pacific and warming of the 174 

tropical Atlantic during the late 1990s and early 2000s resulted in strengthening of the local 175 



Walker circulation and associated rising motion over South America. This resulted in a notable 176 

increase of severe flooding events across the Amazonian basin (Barichivich et al., 2018). Similar 177 

trends in other basins have also been attributed to modulation of individual cells within the 178 

Global Walker circulation which have implications on future climate teleconnections (Dhame et 179 

al., 2020). 180 

The strength and behavior of the TOCs are primarily driven by the uneven distribution of 181 

diabatic heating/cooling across the tropics which are subject to change in a warming climate 182 

(Vecchi and Soden, 2007; Seidel et al., 2008). Therefore, part of understanding the circulation’s 183 

variability over time also requires understanding how it will be modulated by anthropogenic 184 

climate change. Numerous studies have been conducted in the last decade examining how these 185 

changes will impact tropical circulations (Gastineau, Li, and Le Treut, 2009; Ma, Xie, and 186 

Kosaka, 2012; He and Soden, 2015). These studies conclude that the tropical circulations will 187 

weaken because of anthropogenic climate change due to the weakening global temperature 188 

gradients that drive them. With the weakening of these circulations, it is important to understand 189 

how it will impact the hydrological cycle and local climates which has been the primary focus of 190 

subsequent research (Ma et al., 2018). Further, while these results are plausible, trends in 191 

reanalysis data (e.g., ECMWF ERA-Interim, NCEP/DOE Reanalysis II, JRA-55, MERRA-2 and 192 

CFSR) do not necessarily corroborate all these climate trends compared to climate model 193 

projections (Chemke and Polvani, 2019). Findings such as these highlight the necessity for 194 

continued improvement in global atmospheric reanalysis datasets to continue to improve the 195 

ability of these reanalysis to track large-scale circulations. 196 

 197 



3. Data and Methods 198 

Prior literature concerning the use of VP200 in climate teleconnections and tropical 199 

meteorology have brought forth impactful outcomes in more efficient tracking of the TOCs in 200 

the global tropics. With this prior literature, new interest has been stimulated in the consistency 201 

of VP200’s depiction and use across global weather reanalysis datasets. Therefore, it is 202 

imperative that new literature be established that analyzes VP200 in the global tropics across 203 

multiple reanalysis datasets to strengthen confidence in the prior conclusions established using 204 

these data and their use in future applications. 205 

3.1. Data Sources 206 

The three commonly used global weather reanalysis datasets that extend prior to the 207 

satellite era are the NCEP/NCAR R1, ECMWF ERA5, and JRA-55 (full-period reanalysis 208 

datasets henceforth) with a common period beginning in 1959, when upper air observations 209 

became more consistent (Table 1). These datasets are important in understanding modeled 210 

variability of VP200 given fewer observations existed to capture the variability of large-scale 211 

phenomena like the TOCs. Therefore, it was anticipated that greater discrepancies and 212 

uncertainty would exist with these data when evaluating the VP200 fields, especially over data 213 

sparse regions (e.g, tropics, oceans).  214 

The satellite era reanalysis datasets (NCEP/NCAR R2, NASA MERRA2, and 215 

CFSR/CFSv2) were used over their full periods within the study’s 1959-present temporal domain 216 

to strengthen consensus of the VP200 fields and identify what discrepancies existed with these 217 

datasets. Since NCEP/NCAR R1 (shortened to NCEP R1 henceforth) was the primary dataset 218 

used in much of the early foundational literature using velocity potential to monitor the TOCs, it 219 



was considered the control dataset to which other datasets were to be compared (Table 1). 220 

Datasets such as ERA5 and JRA-55 provide a higher spatiotemporal resolution, 4D-Var data 221 

assimilation, improved model physics, and more observations (Hersbach et al., 2019; 2020). 222 

These developments resulted in notable improvements from the NCEP R1 particularly with 223 

precipitation in data sparse regions such as equatorial Africa and South America in which further 224 

analysis with data separate from the reanalysis datasets would be necessary (Kalnay et al., 1996; 225 

Kistler et al., 2001; Kobayashi et al., 2015). 226 

The highly correlated variables to VP200 (e.g. OLR and precipitation) were evaluated in 227 

these global weather reanalysis datasets using independent datasets. The independent 228 

precipitation data were comprised of two merged satellite-rain gauge products (i.e., CMAP and 229 

GPCP version 2.3) and a land station-based product from the Global Precipitation Climatology 230 

Centre (GPCC) as they were used in the prior literature (Chelliah and Bell, 2004; Kinter et al., 231 

2004; Kobayashi et al., 2015). CMAP and GPCP version 2.3 have a temporal domain from 1979-232 

2020 which was adequate for verifying much of the temporal domain. However, this left 22 233 

years of reanalysis data with limited credible alternatives for verification in the pre-1979 portion 234 

of the study period early period (Xie and Arkin, 1997; Adler et al., 2018). To remedy this issue, 235 

the land-based rain gauge data from the GPCC precipitation dataset was used over most of the 236 

study’s temporal domain in addition to the merged satellite-rain gauge products (Becker et al., 237 

2013). It was acknowledged that using land-only observations to evaluate the performance of 238 

reanalysis-based variables was a limitation in this study. Nevertheless, few precipitation datasets 239 

were available during the pre-satellite era (1979-present), and GPCC was the most temporally 240 

complete gridded gauge-analysis product for climate analysis to date.  241 



Mitigation of some of these limitations were addressed by using the NOAA Interpolated 242 

OLR and HIRS OLR monthly dataset that spanned from January 1979 to present to provide a 243 

tertiary source of verification to reanalysis datasets. The NOAA OLR dataset uses the Advanced 244 

Very High-Resolution Radiometer (AVHRR) instrument aboard the NOAA polar orbiting 245 

spacecraft to collect swaths of OLR data which are spatially and temporally interpolated onto 246 

grids to facilitate use (Liebmann and Smith, 1996). The HIRS OLR dataset is a newer alternative 247 

to the NOAA Interpolated with inclusion of more OLR data sources from instruments onboard 248 

NOAA TIROS-N series and Eumetsat MetOp-A/B polar-orbiting satellites to geostationary 249 

satellite estimates (Lee, Gruber, Ellingson and Laszlo, 2007; Lee, 2018; Schreck, Lee, and 250 

Knapp, 2018). 251 

Reanalysis Ensemble Ensemble Members 

Full-period Reanalysis datasets (1959-2020) NCEP R1, ERA5, JRA55 

Satellite Era Reanalysis datasets (1980-2020) NCEP R2, CFSR/v2, MERRA-2 

NCEP Reanalysis datasets NCEP R1, NCEP R2, CFSR/v2 

Non-NCEP Reanalysis datasets MERRA-2, JRA-55, ERA5 

Table 1. Grouping of reanalysis datasets for data analysis and discussion of results based on common attributes. 252 

3.2. Data Analysis 253 

A climatology of global VP200 from 20⁰N to 20⁰S was created for all months and 254 

seasons using the 1981-2010 reference period for each reanalysis dataset, respectively. The use 255 

of temporal filtering was leveraged to reduce transition season variability. It was determined 256 



prior that DJF and JJA are the most seasonally consistent periods in the VP200 climatology, and 257 

are preferred over annual means, because they remove the strong seasonality of tropical 258 

convection and its atmospheric response that are associated with the transition seasons (Chelliah 259 

and Bell, 2004). However, to evaluate the full temporal scope of these global weather reanalysis’ 260 

ability to capture climate variability, all timesteps were used in this study.  261 

The 1981-2010 climatological means were used to calculate monthly and seasonal 262 

anomalies for VP200, outgoing longwave radiation (OLR), and daily precipitation rate (PR). 263 

Monthly climatological means and anomalies of VP200 were then used to spatially compare to 264 

the respective reanalysis’ own variables (OLR and PR) and compute the correlation coefficients 265 

(r) between the reanalysis and independent precipitation and OLR datasets (e.g., CMAP, GPCP, 266 

GPCC, NOAA Interpolated OLR, and HIRS OLR). These analyses were conducted over four 267 

key tropical regions: Equatorial Indonesia [0⁰-10⁰N, 95⁰E-115⁰E], Equatorial Central Pacific [0⁰-268 

10⁰N, 170⁰W-150⁰W], Amazonian Monsoon Region [10⁰S-0⁰, 55⁰W-45⁰W], and West African 269 

Monsoon Region [0⁰-15⁰N, 0⁰-30⁰E] (Figure 1). 270 

 271 
Figure 1. Study spatial domain bounded between 20⁰N to 20⁰S and red boxes denoting the domains of the four study 272 

regions analyzed further. 273 

These regions were selected due to their noted interdecadal variance in mean 274 

precipitation which can be used to evaluate how well interdecadal variance of VP200 relates to 275 

these changes (Kinter et al., 2004). Further, these regions spatially coincide with the rising and 276 

sinking branches of the Global Walker Circulation which would capture variability of the TOCs 277 



through the study period. To supplement the reasoning for analyzing these regions further, 30⁰ 278 

longitudinal moving averages (at intervals of 10⁰ bounded between 20⁰S to 20⁰N) were 279 

calculated for VP200 of each global weather reanalysis dataset to provide a more spatially 280 

complete analysis of the locations of the strongest agreement via correlation coefficient between 281 

reanalysis datasets. 282 

VP200, PR, and OLR anomalies were temporally filtered at 1-year, 5-year, and 10-year 283 

moving averages for each study region to evaluate variability for all data sources using time 284 

series plots. These filtered data were purposed with identifying periods of clear disagreement 285 

between the data sources to better understand periods of higher uncertainties and illustrate the 286 

variance in reanalysis’ depiction of the TOCs over time (Tanaka et al., 2004). Pearson 287 

correlation coefficients were computed for all temporally filtered data in addition to the 288 

unfiltered data to analyze linear relationships that may exist between the regions on varying 289 

temporal scales. This allowed for thorough analysis of the dataset’s depiction of the TOCs’ 290 

behavior by quantifying the level of consilience, identifying any nuanced differences between 291 

the datasets not initially evident, and forming stronger conclusions. 292 

4. Results and Discussion 293 

The synopsis of the results is detailed in this section with more detailed discussion of 294 

findings given in the following subsections. VP200 in the global tropics is captured most 295 

effectively in the western equatorial Pacific where ENSO variability is dominant and 296 

spatiotemporal observations have covered the study period sufficiently (Figure 2). Significant 297 

discrepancies in the reanalysis datasets exist in data sparse regions such as tropical South 298 

America and Africa especially prior to the satellite era (i.e., prior to 1979). These areas are where 299 



confidence in the reanalysis datasets’ capturing of VP200 are lowest given the lack of strong 300 

consensus between them. This highlights the need to examine multiple reanalysis datasets in 301 

these regions to provide a range of possible solutions instead of focusing on any one reanalysis 302 

dataset. 303 

 304 
Figure 2. R-values of 30⁰ longitudinal averaged regions bounded between 20⁰N to 20⁰S to describe the level of 305 

agreement of global weather reanalysis upper-tropospheric velocity potential fields (1958-2020). 306 

The results of this study indicate ERA5 had significant improvement in performance with 307 

the independent precipitation and OLR datasets compared to the NCEP R1. This makes its use in 308 

future research of VP200 more viable with acknowledgement to the noted biases it could still 309 

have based on the precipitation and OLR analysis. Alternatively, the NCEP R1’s depicted 310 

variability in VP200 especially over the South American and African continents was not 311 

physically supported by any other data source used in this study. NCEP R1 also observed a much 312 



higher climatological mean value (i.e., stronger upper-level convergence and subsequent sinking 313 

motion) over tropical Africa compared to the JRA-55 and ERA5 which was likely the cause of 314 

the more anomalous negative (i.e., stronger upper-level divergence and subsequent upward 315 

motion) VP200 anomalies in recent decades. These discrepancies did not improve much with 316 

NCEP R2 when compared to the full suite of reanalysis datasets available in the satellite era. 317 

Finally, climatological means of VP200 over the last three climate periods (i.e., 1971-2000, 318 

1981-2010, and 1991-2020) appeared to become more similar between reanalysis datasets which 319 

precludes any conclusive anthropogenic climate signals that could be identified in this analysis. 320 

4.1. 30 Degree Moving Longitudinal Averages 321 

In addition to the four study regions selected for further analysis of VP200, supplemental 322 

analysis was performed on 30⁰ moving longitudinal averages bounded between 20⁰S to 20⁰N to 323 

provide spatial continuity in evaluating full-period reanalysis agreement in VP200 across the 324 

global tropics. Data analysis was also performed using 5-year and 10-year filters to remain 325 

temporally consistent with the analysis by region. The correlations (r) between these reanalysis 326 

averages were used to determine the level of agreement and found highest correlations in the 327 

western (90-150⁰E) and eastern (220-270⁰E) tropical Pacific where mean correlation coefficients 328 

exceeded 0.80 (Figure 2). 329 

This was physically consistent given the high explained variance associated with ENSO 330 

in both areas due to the proximity of the rising and sinking branches of the Pacific portion of the 331 

Global Walker Circulation (Oliver, 2005). The lowest correlations (Mean r < 0.60) were located 332 

over the central tropical Pacific (150-190⁰E) and tropical South America through tropical Africa 333 

(270-50⁰E). Correlations between JRA-55 and ERA5 were comparatively highest over tropical 334 



Africa and central tropical Pacific while correlations between NCEP R1 and ERA5 were 335 

comparatively lowest across nearly all areas. Correlations between JRA-55 and NCEP R1 were 336 

highest over the western and eastern tropical Pacific as well as tropical South America where 337 

ERA5 clearly differed the most from the other two reanalysis (See Appendix A: Table A1). 338 

These results provided increased confidence in the reasoning behind the selection of the four 339 

study regions analyzed further. More specifically, the clear disagreements noted in this analysis 340 

over open ocean (Central Equatorial Pacific) and in data sparse regions (Equatorial Africa and 341 

Amazon Basin) enhanced the motive to further investigate how large these differences were and 342 

why they may be occurring over these areas. 343 

4.2. Climatological Trends in VP200 Reanalysis Datasets 344 

The annual and monthly climatological means for each reanalysis dataset were calculated 345 

over the four study regions selected for further analysis of long-term changes. Understanding 346 

reanalysis estimation of climatological averages in VP200 was crucial in identifying disparities 347 

in the reanalysis data as well as any statistically significant trends over time. While the primary 348 

climatology in this study was 1981-2010, the annual and monthly climatological means of 1971-349 

2000 and 1991-2020 were also calculated for each region to provide better context regarding 350 

reanalysis climatological means (Table A2). The largest disparities in monthly climatological 351 

means were during each region’s respective warm season (boreal summer – JJA, austral summer 352 

– DJF) with the strongest agreement occurring in the cold season (Figure 3). Further, variability 353 

in the monthly climatological means within each region sufficiently captured the expected 354 

variance in values caused by movement of the Hadley cell between hemispheres. The most 355 

consistent conclusion from all four regions was that climatological means began with more 356 



disagreement in the 1971-2000 climatology and were converging to form a stronger consensus of 357 

means by 1991-2020 (Figure 4). These adjustments in climatological means also emphasized the 358 

need for caution in associating these trends with anthropogenic forces without further 359 

examination using other data sources. 360 

 361 
Figure 3. 1981-2010 monthly climatological means of VP200 over (A.) Equatorial Africa, (B.) Amazon Basin, (C.) 362 

Equatorial Central Pacific, and (D.) Equatorial Indonesia for each global weather reanalysis dataset. 363 
 364 



 365 
Figure 4. Annual climatological means of VP200 over (A.) Equatorial Africa, (B.) Amazon Basin, (C.) Equatorial 366 
Central Pacific, and (D.) Equatorial Indonesia for each global weather reanalysis for the last three 30-year climate 367 

periods (1971-2000, 1981-2010, 1991-2020). 368 

Examining the spatial consistency of the climatological means for DJF and JJA 369 

supplemented understanding of how the reanalysis data varied and influenced the quantified 370 

differences (Figure 5). The areas with largest spatial variance between reanalysis during DJF 371 

(austral summer) were in association with the northward extent of Pacific Walker circulation 372 

(and Hadley cell) and the Amazon monsoon circulation’s strength. 373 



 374 
Figure 5. Panel of VP200 seasonal means for the last three 30-year climate periods depicted in each of the 375 

full period (1959-2020) reanalysis datasets. (A) December-January-February means, (B) March-April-May means, 376 
(C) June-July-August means, and (D) September-October-November means. 377 



The NCEP R1 exhibited some of the largest deviances from the ensemble mean 378 

throughout this analysis. One potential cause is that NCEP R1 depicted a more expansive Pacific 379 

Walker circulation across the central Pacific than the modern reanalysis datasets (ERA5, JRA-380 

55, and MERRA2). It also had a more negative VP200 mean over the Amazon basin region 381 

indicative of a stronger rising cell especially in the earlier climate periods. Substantial spatial 382 

differences between NCEP R1 and the modern reanalysis datasets were observed over North 383 

Africa during JJA where the NCEP R1’s means were much higher. Other nuanced differences 384 

were also observed with the eastward extent of the rising cell of the Pacific Walker circulation 385 

with the NCEP R1 extending slightly more east in the central Pacific than the modern reanalysis 386 

datasets. Given this issue extended to DJF, it could provide an explanation as to why the NCEP 387 

R1 means were consistently more negative for all climate periods. 388 

4.2A. Equatorial Africa 389 

Notable disparities were observed in the annual climatological VP200 means of full-390 

period reanalysis datasets for each 30-year average where NCEP R1 ranged from 8.0 (*105 m2/s) 391 

in 1971-2000 to 6.6 in 1991-2020, JRA-55 3.6 to 5.0, and ERA5 4.6 to 5.2 by 1991-2020 (Table 392 

A2). These differing trends in values were assumed to be a symptom of early period biases in 393 

which means were converging toward a consensus climatological value (Figure 4A). The ERA5 394 

and JRA-55 trend could be anthropogenically influenced, or it may be a result of a bias in the 395 

respective models. Further, the statistical significance of the differences was not strong enough 396 

to consider further investigation nor was this aspect the primary motive for this study. 397 

There were differences observed across several months, especially in the 1971-2000 398 

means, when analyzing the monthly VP200 climatological means. However, it was observed that 399 



stronger consensus had developed between JRA-55 and ERA5 for all months by 1991-2020. The 400 

most significant disparity was in the boreal summer months between the modern reanalysis 401 

datasets and the NCEP R1 in which 1981-2010 monthly values differed by over 5.0 (*105 m2/s) 402 

during JJA. These values appeared to be decreasing with each successive climatological mean 403 

which gave stronger confidence in the JRA-55 and ERA5 consensus being closer to a 404 

representative climatological average for both annual and monthly means (Figure 3A). 405 

This region’s monthly means observed a bimodal peak in VP200 during DJF and JJA 406 

with values climatologically most negative during transition seasons which is likely strongly 407 

influenced by movement of the rising branch of the Hadley cell between each hemisphere. This 408 

is physically consistent given that the West African Monsoon is active during the warm season 409 

and the Intertropical Convergence Zone (ITCZ) is typically located north of this region (Raj et al. 410 

2019; Geen et al. 2020). 411 

4.2B. Amazon Basin 412 

         The annual climatological means of full-period reanalysis datasets for the Amazon Basin 413 

region were initially in less agreement in the 1971-2000 means with JRA-55 at 3.0 (*105 m2/s), 414 

ERA5 at 1.8, and NCEP R1 near 0 (Table A2). However, by 1991-2020 these means had 415 

converged with JRA-55 near 2.7, ERA5 at 2.3, and NCEP R1 at 1.7 (Figure 4B). Given the 416 

magnitude of changes in the climatological means across the three periods, it suggested that 417 

NCEP R1 was furthest from the consensus climatological mean initially. This region was the 418 

only to observe a majority of reanalysis datasets trending positive in VP200 annual means which 419 

could be investigated further as an anthropogenically driven climate trend given the adverse 420 

changes in land types being observed in the Amazon (Alves de Oliveira et al. 2021). 421 



The seasonal variability of VP200 in monthly climatological means for each reanalysis 422 

were generally in agreement. The largest differences occurred during austral summer months 423 

with NCEP R1 means consistently more negative than the newer reanalysis datasets (Figure 3B). 424 

MERRA-2 also had a lower austral winter peak in monthly means compared to other reanalysis 425 

datasets. The variability of the monthly means over the region effectively captured the expected 426 

behavior of southern hemisphere Hadley cell propagation with values most negative during DJF 427 

and most positive during JJA. These monthly means were also indicative of the annual means 428 

behavior in which a stronger consensus was made apparent with the 1991-2020 monthly means. 429 

ERA5 appeared to be the most consistent reanalysis between climatological means as it held the 430 

highest agreement to the ensemble reanalysis mean of climatological means. 431 

4.2C. Equatorial Central Pacific 432 

         There were some converging trends observed from the 1971-2000 to 1991-2020 annual 433 

VP200 climatological means in this region, but also a notable disparity involving NCEP R1 and 434 

NCEP R2. Modern reanalysis datasets were generally between -3.0 and -3.7 (*105 m2/s) while 435 

NCEP R1 and NCEP R2 annual means were between -5.1 to -5.8 (Table A2).  436 

The monthly climatological means observed a bimodal peak inverse to Equatorial Africa 437 

where mean values were highest during the transition seasons and lowest during DJF and JJA. 438 

This variability, while influenced by the Hadley cell, was also evidently influenced by the GWC 439 

in which transition season forces are weakest along the equatorial Pacific (Figure 3C). 440 

The NCEP R1 and NCEP R2 were as much as 2.7 (*105 m2/s) lower in mean value 441 

compared to the modern reanalysis. The disparity present with the NCEP reanalysis datasets 442 



warranted further interrogation to determine potential causes and diagnose any bias that may 443 

exist in this region. It was postulated that the consistent negative bias in the NCEP reanalysis 444 

datasets for this region was due to the significantly anomalous negative values observed in the 445 

early period (e.g., 1958-1979). If NCEP R1 and R2 were removed from the reanalysis datasets 446 

means, it was noted there was a subtle negative slope to ERA5, MERRA-2, and CFSR/v2 that 447 

could point to either a wetting bias or anthropogenic trend (Figure 4C). 448 

4.2D. Equatorial Indonesia 449 

         The annual climatological means over Equatorial Indonesia demonstrated the highest 450 

agreement over the period with the JRA55 and ERA5 gradually decreasing and settling close to 451 

NCEP R1 at around -10.0 (*105 m2 s-1) (Table A2). Again, given that early discrepancies existed 452 

between the datasets, it was much harder to diagnose any substantive anthropogenic climate 453 

trends in these data and rather represent a convergence of the reanalysis data toward a consensus 454 

climatological mean value (Figure 4D). 455 

Monthly climatological means over the region depicted a strong seasonality of the VP200 456 

in association with movement of the Hadley cell and respective rising branch of the GWC 457 

(Figure 3D). Means were spread largest during boreal summer illustrating the increased 458 

uncertainty in modeled behavior when more widespread tropical convection was present. This 459 

range decreased over time as indicated by the annual means calculated using the 1991-2020 460 

monthly means that formed a stronger consensus for all months (Table A2). This led to the 461 

Equatorial Indonesia region as the region with the highest confidence (e.g., consensus) in the 462 

VP200 for the entire period analyzed. 463 



4.3. Velocity Potential Variability Analysis by Region 464 

While Section 4.2. analyzed each region’s climatological VP200 means, this section will 465 

present each region’s VP200 anomalies. These anomalies were analyzed with 1-year, 5-year, and 466 

10-year temporal filters to provide a suite of visualizations depicting interannual, decadal, and 467 

multidecadal agreement between reanalysis datasets (Tables A3 and A4). NCEP reanalysis 468 

datasets (i.e., CFSR/v2, NCEP R1, and NCEP R2) had the largest disagreements to the non-469 

NCEP reanalysis datasets (i.e., ERA5, JRA-55, and MERRA-2) over the Equatorial Africa and 470 

Amazon Basin regions throughout the period in all filtered temporal scales. Lower magnitude 471 

differences were depicted in the Equatorial Indonesia region with additional disagreement in 472 

anomaly values apparent in the early period between NCEP R1 and the newer reanalysis in the 473 

Equatorial Central Pacific region. 474 

4.3A. Equatorial Africa 475 

Low agreement existed in all temporally filtered monthly anomalies in the Equatorial 476 

Africa region analyzed for the pre-satellite period (Figures 6A and 6B). While the newer 477 

reanalysis increased in agreement beginning in the late 1980s, the NCEP R1 and R2 anomalies 478 

seldom agreed with them. More specifically, JRA55 and NCEP R1 anomalies appeared to even 479 

have more inverse behavior in the 5-year and 10-year filtered anomalies with more positive 480 

NCEP R1 anomalies from the late 1970s until the late 1990s while JRA-55 possessed more 481 

negative anomalies during this period. 482 

The NCEP R1 flipped to more negative values, like values in the 1950s and 1960s, 483 

during the last two decades of the study period which had been leveraged as a potential 484 



multidecadal signal in the past (e.g., Bell and Chelliah, 2006). This was not supported by newer 485 

reanalysis data with ERA5, MERRA-2, and CFSR (prior to CFSv2 extension) bounded more 486 

closely to zero than the NCEP R1, NCEP R2, and JRA-55. Some decadal and interannual 487 

behaviors are observed throughout the period, however, the disagreement in magnitude and sign 488 

amongst the datasets increased the difficulty in diagnosing such variability especially prior to 489 

1990 (Figures 7A and 7B). 490 

 491 

4.3B. Amazon Basin 492 

         Some of the most conclusive evidence in identifying differences between the reanalysis 493 

datasets was found in the Amazon Basin region. Across all temporally filtered monthly 494 

anomalies, the NCEP R1 values were notably different in comparison to the JRA-55 and ERA5 495 

for the entire period (Figure 6C). The 5-year and 10-year filtered anomalies make this 496 

discrepancy more evident as the NCEP R1 possessed anomalously higher values for much of the 497 

early period before 1980 (Figure 6D).  498 

These values then became anomalously more negative than the newer reanalysis datasets 499 

from 1980 to 2000 before becoming anomalously more positive once more during the last two 500 

decades of the study period. NCEP R1’s behavior was far more variable over the temporal 501 

domain compared to the newer reanalysis datasets and provided compelling evidence toward the 502 

uncertainty of the NCEP R1 over this region. These large discrepancies appear to be reduced in 503 

the satellite era with the NCEP R2 and are in better agreement with the ERA5, MERRA-2 and 504 

JRA-55 which held the highest agreement with one another in this region (Figures 7C and 7D). 505 



4.3C. Equatorial Central Pacific 506 

The Equatorial Central Pacific region exhibited a similar signal as the previous sections 507 

as NCEP R1, NCEP R2, and CFSR/v2 data exhibited larger differences than the newer reanalysis 508 

datasets, especially with NCEP R1 in the early period prior to the satellite era. VP200 monthly 509 

anomalies in the NCEP R1 were consistently anomalously more negative during the pre-satellite 510 

era before converging into a much tighter consensus with the other reanalysis datasets (Figures 511 

6E and 6F).  512 

The behaviors captured especially in the 1-year filtered anomalies were directly 513 

associated with ENSO variability with negative anomalies associated with warmer ENSO while 514 

positive anomalies occurred during cooler ENSO events (Figure 7E). The 5-year and 10-year 515 

filtered anomalies after 1979 were more tightly agreed upon and thus captured a reasonable 516 

consensus in decadal and multidecadal variability in ENSO behavior during this period (Figure 517 

7F). 518 

4.3D. Equatorial Indonesia 519 

         The region with strongest consensus amongst all reanalysis datasets employed in this 520 

study was Equatorial Indonesia. General agreement was observed through much of the study 521 

period with only subtle differences in magnitude.  522 

ENSO variability was also captured in this region in the 1-year filtered anomalies with a 523 

sign opposite to the Equatorial Central Pacific region given its placement on the other side of the 524 

Pacific Walker circulation (Figures 6G and 7G). However, more noticeable disagreement was 525 

identified between NCEP and non-NCEP reanalysis datasets in the 5-year and 10-year anomalies 526 



(Figures 6H and 7H). Most notably, the NCEP reanalysis datasets had more negative values in 527 

the late 1980s to mid-1990s which then became more positive from the mid-2000s until 2020. 528 

While ERA5 and JRA-55 held the highest agreement with each other, it was observed that both 529 

began above the ensemble mean of anomalies at the beginning of the period before becoming 530 

more negative in the 2005-2015 period indicating the potential existence of a wetting bias in this 531 

region. These datasets also agreed best with the MERRA-2 which appeared to remain closer to 532 

the ensemble mean of anomalies through the period. Regardless, this supports the reanalysis 533 

ensemble mean approach countering individual dataset biases with the objective of providing a 534 

representative depiction of VP200 variability over the region. 535 



 536 
Figure 6. 1-year (left) and 5-year (right) filtered (moving average) of VP200 anomalies of each full period global 537 
weather reanalysis dataset over (A. and B.) Equatorial Africa, (C. and D.) Amazon Basin, (E. and F.) Equatorial 538 

Central Pacific, and (G. and H.) Equatorial Indonesia. 539 



 540 
Figure 7. 1-year (left) and 5-year (right) filtered (moving average) of VP200 anomalies of each global weather 541 

reanalysis dataset for only satellite era over (A. and B.) Equatorial Africa, (C. and D.) Amazon Basin, (E. and F.) 542 
Equatorial Central Pacific, and (G. and H.) Equatorial Indonesia. 543 



4.4. Reanalysis Performance with Independent Datasets 544 

The monthly VP200 anomalies calculated for varying, filtered temporal scales yielded 545 

notable disagreements that warranted further investigation using independent OLR and 546 

precipitation datasets (i.e., not leveraged in the data assimilation schemes for the reanalysis data). 547 

The behaviors exhibited by the VP200 anomalies from the reanalysis datasets were compared to 548 

the respective reanalysis OLR and precipitation anomalies (e.g., negative (positive) OLR and 549 

positive (negative) PR anomalies were associated with negative (positive) VP200 anomalies). 550 

These reanalysis OLR and PR anomalies were then directly compared to independent datasets to 551 

form a stronger conclusion and diagnose potential biases that exist with these reanalysis datasets 552 

in each region. 553 

4.4.1. Precipitation 554 

ERA5 consistently performed the best (i.e., highest R-value in respective study regions) 555 

among the reanalysis datasets especially in the Amazon Basin region while NCEP R1 performed 556 

the worst. There was generally strong agreement between the independent precipitation datasets 557 

across all regions with Equatorial Africa having the weakest agreement. Further, it was 558 

acknowledged a potential caveat in this analysis was the CMAP’s use of NCEP/NCAR 559 

reanalysis to interpolate precipitation values which could create bias in favor of NCEP reanalysis 560 

datasets in this performance analysis, especially in the pre-satellite era. This performance 561 

analysis was also temporally limited due to the differences in temporal domains of these 562 

independent datasets. Therefore, the analysis of independent precipitation data was grouped by 563 

common period (1980-2016) to include all datasets, long-term (1959-2016) to examine 564 

agreement to the GPCC for much of the temporal domain, and short-term (1980-2020) using the 565 



GPCP v2.3 and CMAP to examine their full temporal domains with respect to the reanalysis 566 

datasets (Tables A5-A7). 567 

4.4.1A. Equatorial Africa 568 

The respective reanalysis agreement over the temporal domain was quite spread with 569 

each reanalysis’ behavior comparable to their respective VP200 anomalies. The ERA5 was 570 

found to have the highest correlation values (r = 0.57-0.66) to the independent precipitation 571 

datasets over Equatorial Africa with PR anomaly behaviors bounded closer to zero and less 572 

anomalous than the JRA-55 and NCEP reanalysis datasets (Figure 8A). While these r-values do 573 

not indicate strong agreement with the independent data, they were notably higher than the other 574 

reanalysis datasets with the JRA-55 being the worst performer in this region (r = 0.11-0.20) 575 

(Table A5). 576 

Further, it was observed that ERA5 and MERRA-2 were wetter than the independent 577 

precipitation datasets from the late 1960s to the late 1990s before becoming drier than these 578 

datasets in the latter period (Figures 9A and 9B). This could indicate the existence of a 579 

quantifiable drying trend in the ERA5 and/or MERRA-2 data that could improve its agreement 580 

with the independent data. The NCEP R1 and JRA-55 exhibited more variability than ERA5 581 

during the study period. This made it difficult to assess any trends that could improve their 582 

performances since there was no quantifiable linear trend. 583 

The independent precipitation data were found to be in reasonable agreement with each 584 

other with r-values between 0.79 and 0.92 for this period. Further, the independent data did not 585 

support the variability shown in the NCEP R1 and JRA-55 and were much closer in behavior and 586 



magnitude to the ERA5. R-values were found to be much lower for the ERA5 and JRA-55 when 587 

evaluating their agreement with the GPCC for 1959-2016 (Table A6). This emphasized the 588 

greater uncertainties observed in the reanalysis data prior to the satellite era (e.g., 1958-1979) 589 

and the limitations driven by data sparsity in the region. 590 

4.4.1B. Amazon Basin 591 

The ERA5 was the best performer of any of the reanalysis datasets in the Amazon Basin. 592 

Further strengthening this conclusion was that the independent precipitation data remained in 593 

strong agreement (r = 0.94-0.98) for this period. Comparing the GPCP v2.3 and CMAP data with 594 

the ERA5 yielded the highest r-values of the reanalysis datasets (r = 0.88-0.91) with the JRA-55 595 

scoring just under this (r = 0.83-0.86) for the common 1980-2016 period (Table A5). When 596 

examining the earlier period, JRA-55 and ERA5 are closer in correlation with the GPCC (r = 597 

0.74) (Table A6). ERA5 appears closer in values from 1959-1974 before becoming anomalously 598 

wetter during the 1975-1984 period (Figure 8B). 599 

Another noteworthy finding in this region was the NCEP R1 and NCEP R2’s poor 600 

performance with r-values between 0.16 and 0.31 for all independent precipitation datasets. The 601 

NCEP R1 PR anomaly values are significantly drier for much of the early period until 1976 602 

when it becomes wetter than the other data through the late 1990s. The seemingly erroneous data 603 

continues into the 2000s where values become notably drier once more before settling closer to 604 

the other data around 2015. The NCEP R2 resembled the same behaviors as NCEP R1, but with 605 

more extremely anomalous PR values (Figures 9C and 9D). This behavior is not physically 606 

supported in any other dataset including the newest generation of NCEP reanalysis in the 607 

CFSR/v2 and aids in explaining the significant difference in behavior of the VP200 compared to 608 



the newer reanalysis datasets (Barichivich et al., 2018). By extension, the NCEP R1 and NCEP 609 

R2’s inability to resolve the modeled precipitation of this region is likely a key contributor to the 610 

large disagreement they have with the non-NCEP reanalysis datasets detected in the velocity 611 

potential fields in Section 4.3B. 612 

4.4.1C. Equatorial Central Pacific 613 

         Reanalysis agreement across the Equatorial Central Pacific improved in the satellite era, 614 

as all three full period datasets had sufficient correlations (r > 0.60) with the independent 615 

precipitation datasets. The primary caveat was the lack of early period performance analysis due 616 

to the GPCC’s spatial limitations to only land areas. The ERA5 had the highest r-values once 617 

again with r-values ranging between 0.83 and 0.89. The JRA-55 reanalysis was not much lower 618 

(r = 0.81-0.84) while NCEP R1 and R2 performed the worst but had comparatively higher r-619 

values than it did in other regions (r = 0.56-0.67) (Table A5). Despite this, the early period 620 

featured notable disagreement between the reanalysis datasets with no independent data to lend 621 

confidence in the performance analysis (Table A6). The NCEP R1 on average had anomalously 622 

high PRs for the first two decades of the period in comparison to the newer reanalysis data 623 

(Figures 8C, 9E, and 9F).  624 

Recalling the significantly anomalously negative VP200 that were estimated during this 625 

period, it was leveraged that these higher rain rates were dubious and likely were associated with 626 

the aforementioned early period bias in the dataset. Further, the NCEP R1 and R2 observed 627 

much lower rain rates than the other data since 2015 decreasing confidence in its usefulness even 628 

in more current analysis. 629 



4.4.1D. Equatorial Indonesia 630 

         The highest confidence in performance and capturing of variability for the entire 631 

temporal domain was in the Equatorial Indonesia region where ERA5 was the best performer (r 632 

= 0.84-0.91) and the independent precipitation data were in good agreement (r = 0.84-0.94). 633 

JRA-55 was the second-best performer in this region (r = 0.76-0.83) with the NCEP R1 and R2 634 

once again were the worst performers (r = 0.47-0.54) (Table A5). Most notably, ERA5 had the 635 

highest correlation with the GPCC over any region (r = 0.80) for the 1959-2016 period making it 636 

the best performer of the reanalysis datasets over all regions (Table A6). The early period biases 637 

continued to plague the NCEP R1 with notably drier PR anomalies on average until the satellite 638 

era with little in the way of coherence to variability depicted in the other data (Figures 8D, 9G, 639 

and 9H). 640 



 641 

Figure 8. 5-year filtered (moving average) of daily precipitation rate anomalies of each full period global weather 642 
reanalysis and independent dataset over (A.) Equatorial Africa, (B.) Amazon Basin, (C.) Equatorial Central Pacific, 643 

and (D.) Equatorial Indonesia. 644 



 645 
Figure 9. 1-year (left) and 5-year (right) filtered (moving average) of daily precipitation rate anomalies of each 646 

global weather reanalysis and independent dataset for only satellite era over (A. and B.) Equatorial Africa, (C. and 647 
D.) Amazon Basin, (E. and F.) Equatorial Central Pacific, and (G. and H.) Equatorial Indonesia. 648 



4.4.2. Outgoing Longwave Radiation 649 

The NOAA Interpolated and HIRS OLR datasets did not agree in most regions of this 650 

performance analysis. The Equatorial Central Pacific region was the only region where modest 651 

agreement existed between the OLR datasets (r = 0.72) with r-values of all other regions at 0.40 652 

or lower (Table A7). Additionally, the NOAA Interpolated OLR dataset had strong disagreement 653 

with the full-period reanalysis datasets over all regions while the HIRS OLR dataset exhibited 654 

stronger agreement especially with the ERA5. Outside Equatorial Africa, NOAA Interpolated 655 

had higher correlations (r = 0.71-0.85) to the satellite era reanalysis datasets through the 1980-656 

2020 period. MERRA-2 and CFSR/v2 in particular being in more agreement with NOAA 657 

Interpolated over HIRS OLR indicate the differences in assimilation techniques and data sources 658 

that make these data more or less similar to the respective independent OLR datasets. The ERA5 659 

was the best performer over all regions and most notably held a much stronger correlation to the 660 

HIRS OLR in the Equatorial Africa region (r = 0.82) compared to the other reanalysis. Most of 661 

the conclusions in reanalysis performance were comparable to the precipitation performance 662 

analysis which further strengthened the confidence in these conclusions. 663 

4.4.2A. Equatorial Africa 664 

         Equatorial Africa had the weakest agreement between OLR datasets (r = 0.08) and the 665 

full-period reanalysis data strongly disagreed with the NOAA Interpolated OLR data (r = 0.01-666 

0.08). ERA5 had the strongest agreement with the HIRS OLR data (r = 0.81) with the other 667 

reanalysis datasets also having comparatively higher agreement (NCEP R1 r = 0.58, JRA-55 r = 668 

0.50) than with the NOAA Interpolated data (Table A7). The lower correlations with JRA-55 669 

were anticipated given its poor precipitation performance in the precipitation data analysis. 670 



However, conclusions were clouded due to the satellite era reanalysis having higher correlations 671 

to the NOAA Interpolated (MERRA-2 r = 0.60, CFSR/v2 r = 0.56, NCEP R2 r = 0.44) rather 672 

than HIRS OLR. Given ERA5’s correlation to HIRS OLR in addition to the precipitation dataset 673 

analysis strengthened confidence in the ERA5 as the best-performing reanalysis dataset in this 674 

region (Figures 10A, 11A, and 11B). The primary caveat with this conclusion being that 675 

MERRA-2 held the highest correlation to NOAA Interpolated which emphasized the importance 676 

of ensemble-based approaches to better capture these uncertainties. 677 

4.4.2B. Amazon Basin 678 

         There was poor agreement amongst the full-period reanalysis datasets with the NOAA 679 

Interpolated dataset (r = 0.21-0.29) during the 1980-2020 period in the Amazon Basin region 680 

while the HIRS OLR data held much stronger agreement. The ERA5 outperformed the other 681 

reanalysis datasets (r = 0.91) with JRA-55 as the second-best performer (r = 0.80) (Table A7). 682 

NCEP R1’s poor precipitation performance in this region extended to OLR with an r-value of 683 

0.51 further decreasing confidence in its reliability for use in estimating variability of VP200 684 

whilst increasing ERA5’s confidence in performance over this region (Figures 10B, 11C, and 685 

11D). NOAA Interpolated held highest correlation to CFSR/v2 (r =0.77) and MERRA-2 (r = 686 

0.71) in contrast to the conclusions made by ERA5 using HIRS OLR. 687 

4.4.2C. Equatorial Central Pacific 688 

         Independent OLR data was in better agreement with one another in the Equatorial Central 689 

Pacific (r = 0.72), however, NOAA Interpolated was still in weaker agreement with the full-690 

period reanalysis datasets (r = 0.51-0.68). Despite the disparities in OLR data, ERA5 was the 691 



best performing dataset compared to both independent OLR datasets. The ERA5 had strong 692 

agreement with the HIRS OLR data (r = 0.95) followed by the JRA-55 (r = 0.83) and then the 693 

NCEP R1 (r = 0.71) (Table A7). NOAA Interpolated’s highest agreement was with CFSR/v2 (r = 694 

0.85) and MERRA-2 (r = 0.83), and accounting for agreement with all other datasets in the 695 

matrix, these two along with ERA5 were the top performing datasets for this region. These 696 

results did not deviate much from the precipitation performances in this region, thus showing a 697 

degree of physical and dynamical consistency (Figures 10C, 11E, and 11F).  698 

4.4.2D. Equatorial Indonesia 699 

         In conjunction with the precipitation analysis in this region, the ERA5 held the strongest 700 

agreement to the independent data (HIRS OLR r = 0.95) compared to the other reanalysis 701 

datasets. The HIRS OLR data agreed most with the full-period reanalysis datasets with the 702 

NOAA Interpolated in better agreement to the satellite era datasets (r = 0.77-0.79). The JRA-55 703 

was the second-best performer (HIRS OLR r = 0.91) while CFSR/v2 (HIRS OLR r = 0.27) and 704 

NCEP R1 (NOAA Int. r = 0.31) were the worst performers in this region (Table A7). Further, the 705 

reanalysis datasets were in strongest agreement in this region which was consistent with the 706 

correlations computed for precipitation and VP200 (Figures 10D, 11G, and 11H). This yielded 707 

the highest confidence of any of the regions that the reanalysis data sufficiently captured 708 

variability of the VP200 through much of the study period. 709 



 710 
Figure 10. 5-year filtered (moving average) of outgoing longwave radiation anomalies of each full period global 711 

weather reanalysis and independent dataset over (A.) Equatorial Africa, (B.) Amazon Basin, (C.) Equatorial Central 712 
Pacific, and (D.) Equatorial Indonesia. 713 



 714 
Figure 11. 1-year (left) and 5-year (right) filtered (moving average) of outgoing longwave radiation anomalies of 715 

each global weather reanalysis and independent dataset for only satellite era over (A. and B.) Equatorial Africa, (C. 716 
and D.) Amazon Basin, (E. and F.) Equatorial Central Pacific, and (G. and H.) Equatorial Indonesia. 717 



5. Conclusion 718 

The development of global weather reanalysis datasets in recent decades has provided the 719 

basis for significant advancement in understanding of climate teleconnections and its impacts on 720 

tropical convection. The use of VP200 has been popularized for its climate teleconnection 721 

applications in both short and long temporal scales with regards to tracking enhancement and 722 

suppression of tropical convection and its associated precipitation. Therefore, accurately 723 

understanding the variability of VP200 on varying temporal scales in the tropical atmosphere can 724 

provide better understanding of how tropical convection is being influenced by tropical 725 

overturning circulations (TOCs) on these timescales. Applications such as this could enable more 726 

real-time tracking and anticipation of changes in tropical convective behavior as these TOCs 727 

change via anthropogenic and natural processes.  728 

The results of this study highlighted the western and eastern equatorial Pacific as the 729 

areas of highest agreement while the central equatorial Pacific, equatorial South America, and 730 

equatorial Africa as the areas of lowest agreement which strengthened the basis of further 731 

analysis of these regions. 732 

After evaluation of key regions of tropical variability, discrepancies in the VP200 733 

magnitude were found to exist between older NCEP/NCAR weather reanalysis datasets and the 734 

newer reanalysis such as JRA-55 and ERA5. The largest disagreement was observed in data 735 

sparse regions with NCEP R1 observing anomalous VP200 variability in Equatorial Africa, 736 

Amazon Basin, and Equatorial Central Pacific, especially prior to 1980. The region with highest 737 

agreement across all data sources was Equatorial Indonesia where the largest rising branch of the 738 

Global Walker Circulation is situated, and more consistent nearby upper air observations were 739 



available. While the discrepancies decreased as the number of observations increased with time, 740 

the NCEP R1 and R2 datasets in particular were consistently less correlated with the other 741 

reanalysis datasets as well as the independent PR and OLR datasets. The ERA5 reanalysis was 742 

consistently the highest correlated to the independent data used in this study, especially over the 743 

Amazon Basin, followed by the JRA-55 and MERRA-2. This finding is consistent with other 744 

validation studies (Tarek et al. 2020; Hersbach et al. 2020). While these datasets have their own 745 

biases that caution exclusive use for future analysis of VP200 variability, they appear to be most 746 

representative of VP200 variability over the key regions analyzed. These limitations also 747 

highlight the importance of ensemble-based approaches to analyzing variability of climate 748 

teleconnections in future studies and its utility in revisiting prior work that used older reanalysis 749 

solely. However, selection of reanalysis data sources (i.e. the origin and generation of reanalysis) 750 

in any ensemble created is crucial to limit inherent biases. 751 

By establishing the temporal and spatial discrepancies between the data sources in this 752 

study, these findings will enable more confident use of global weather reanalysis in further 753 

analysis of VP200 variability on varying temporal scales. These discrepancies also highlight the 754 

need for continued improvement of weather reanalysis data via increased observations and 755 

modeling capabilities as well as more in-depth analysis of specific regions in the tropics (e.g., 756 

Eq. Africa) to better understand how these areas influence or are influenced by the TOCs over 757 

time. 758 

 759 

 760 

 761 
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Appendix A – Tables 977 

Reanalysis 200 hPa Velocity Potential Variable R-values by 10⁰ Intervals – 1959-2020 
Moving 30⁰ Longitudinal Averages 

Longitude JRA55:NCEP R1 JRA55:ERA5 ERA5:NCEP R1 Mean Value 

0-30⁰E 0.46 0.70 0.41 0.52 

10-40⁰E 0.48 0.71 0.44 0.54 

20-50⁰E 0.58 0.73 0.49 0.60 

30-60⁰E 0.68 0.75 0.57 0.67 

40-70⁰E 0.75 0.76 0.63 0.71 

50-80⁰E 0.79 0.74 0.65 0.73 

60-90⁰E 0.81 0.72 0.62 0.72 

70-100⁰E 0.82 0.73 0.62 0.72 

80-110⁰E 0.84 0.77 0.66 0.76 

90-120⁰E 0.87 0.81 0.72 0.80 

100-130⁰E 0.89 0.84 0.78 0.84 

110-140⁰E 0.89 0.86 0.79 0.85 

120-150⁰E 0.88 0.84 0.77 0.83 

130-160⁰E 0.83 0.78 0.68 0.76 

140-170⁰E 0.76 0.71 0.53 0.67 

150-180⁰E 0.69 0.69 0.41 0.60 

160-190⁰E 0.67 0.73 0.38 0.59 

170-200⁰E 0.68 0.78 0.42 0.63 

180-210⁰E 0.70 0.81 0.46 0.66 

190-220⁰E 0.73 0.82 0.50 0.68 

200-230⁰E 0.76 0.83 0.56 0.72 

210-240⁰E 0.81 0.85 0.67 0.78 

220-250⁰E 0.87 0.87 0.76 0.83 

230-260⁰E 0.90 0.87 0.80 0.86 

240-270⁰E 0.88 0.83 0.75 0.82 

250-280⁰E 0.85 0.76 0.67 0.76 

260-290⁰E 0.80 0.62 0.56 0.66 

270-300⁰E 0.76 0.46 0.46 0.56 

280-310⁰E 0.75 0.35 0.38 0.49 

290-320⁰E 0.74 0.35 0.33 0.47 

300-330⁰E 0.71 0.40 0.29 0.47 

310-340⁰E 0.65 0.46 0.28 0.46 

320-350⁰E 0.61 0.53 0.28 0.47 

330-0⁰E 0.60 0.61 0.31 0.51 

340-10⁰E 0.59 0.65 0.33 0.52 

350-20⁰E 0.57 0.69 0.37 0.54 

Table A1. R-values describing the level of reanalysis agreement of VP200 over 30⁰ moving longitudinal 978 
averages. 979 

 980 

 981 



Table A2. Annual climatological means of VP200 for each global weather reanalysis for the last three 30-982 
year climate periods. 983 

 984 

 985 

Reanalysis 200 hPa Velocity Potential Annual Climatological Means (*105 m2/s) 
Equatorial Africa 

Climate Period JRA55 ERA5 NCEP R1 

1971-2000 3.58 4.64 7.96 

1981-2010 4.42 4.99 7.47 

1991-2020 4.96 5.17 6.61 

Amazon Basin 

Climate Period JRA55 ERA5 NCEP R1 

1971-2000 3.00 1.79 0.12 

1981-2010 2.61 1.97 0.50 

1991-2020 2.67 2.35 1.74 

Equatorial Central Pacific 

Climate Period JRA55 ERA5 NCEP R1 

1971-2000 -3.46 -2.95 -5.78 

1981-2010 -3.30 -3.15 -5.09 

1991-2020 -3.33 -3.30 -5.14 

Equatorial Indonesia 

Climate Period JRA55 ERA5 NCEP R1 

1971-2000 -9.29 -9.51 -10.20 

1981-2010 -9.62 -9.64 -10.27 

1991-2020 -10.02 -9.95 -10.14 



Table A3. R-value matrix describing the level of full period reanalysis agreement of VP200 over the four 986 
study regions analyzed. 987 

 988 

 989 

 990 

 991 

 992 

 993 

 994 

 995 

 996 

 997 

 998 

 999 

Reanalysis 200 hPa Velocity Potential Variable R-values Matrix – 1959-2020 

Equatorial Africa 

 JRA55 ERA5 NCEP R1 Mean 

JRA55 1.00 0.83 0.54 0.69 

ERA5 0.83 1.00 0.64 0.74 

NCEP R1 0.54 0.64 1.00 0.54 

Mean 0.69 0.74 0.54 - 

Equatorial Amazon 

 JRA55 ERA5 NCEP R1 Mean 

JRA55 1.00 0.92 0.61 0.77 

ERA5 0.92 1.00 0.71 0.82 

NCEP R1 0.61 0.71 1.00 0.66 

Mean 0.66 0.82 0.66 - 

Equatorial Central Pacific 

 JRA55 ERA5 NCEP R1 Mean 

JRA55 1.00 0.97 0.88 0.93 

ERA5 0.97 1.00 0.85 0.91 

NCEP R1 0.88 0.85 1.00 0.87 

Mean 0.93 0.91 0.87 - 

Equatorial Indonesia 

 JRA55 ERA5 NCEP R1 Mean 

JRA55 1.00 0.98 0.86 0.92 

ERA5 0.98 1.00 0.84 0.91 

NCEP R1 0.86 0.84 1.00 0.85 

Mean 0.92 0.91 0.85 - 



Reanalysis 200 hPa Velocity Potential Variable R-values Matrix – 1980-2020 

Equatorial Africa 

 JRA55 ERA5 NCEP R1 
CFSR/v2 NCEP 

R2 
MERRA-2 Mean 

JRA55 1.00 0.90 0.58 0.61 0.61 0.78 0.70 

ERA5 0.90 1.00 0.69 0.69 0.72 0.84 0.77 

NCEP R1 0.58 0.69 1.00 0.45 0.97 0.61 0.66 

CFSR/v2 0.61 0.69 0.45 1.00 0.47 0.62 0.57 

NCEP R2 0.61 0.72 0.97 0.47 1.00 0.65 0.68 

MERRA-2 0.78 0.84 0.61 0.62 0.65 1.00 0.70 

Mean 0.70 0.77 0.66 0.57 0.68 0.70 - 

Amazon Basin 

 JRA55 ERA5 NCEP R1 
CFSR/v2 NCEP 

R2 
MERRA-2 Mean 

JRA55 1.00 0.92 0.61 0.68 0.72 0.85 0.76 

ERA5 0.92 1.00 0.71 0.70 0.76 0.90 0.80 

NCEP R1 0.61 0.71 1.00 0.51 0.90 0.77 0.70 

CFSR/v2 0.68 0.70 0.51 1.00 0.56 0.65 0.62 

NCEP R2 0.72 0.76 0.90 0.56 1.00 0.79 0.75 

MERRA-2 0.85 0.90 0.77 0.65 0.79 1.00 0.79 

Mean 0.76 0.80 0.70 0.62 0.75 0.79 - 

Equatorial Central Pacific 

 JRA55 ERA5 NCEP R1 
CFSR/v2 NCEP 

R2 
MERRA-2 Mean 

JRA55 1.00 0.97 0.88 0.78 0.88 0.90 0.88 

ERA5 0.97 1.00 0.85 0.81 0.85 0.87 0.87 

NCEP R1 0.88 0.85 1.00 0.67 0.95 0.84 0.84 

CFSR/v2 0.78 0.81 0.67 1.00 0.63 0.75 0.73 

NCEP R2 0.88 0.85 0.95 0.63 1.00 0.81 0.82 

MERRA-2 0.90 0.87 0.84 0.75 0.81 1.00 0.83 

Mean 0.88 0.87 0.84 0.73 0.82 0.83 - 

Equatorial Indonesia 

 JRA55 ERA5 NCEP R1 
CFSR/v2 NCEP 

R2 
MERRA-2 Mean 

JRA55 1.00 0.98 0.86 0.87 0.86 0.90 0.89 

ERA5 0.98 1.00 0.84 0.87 0.84 0.89 0.88 

NCEP R1 0.86 0.84 1.00 0.80 0.98 0.84 0.86 

CFSR/v2 0.87 0.87 0.80 1.00 0.78 0.77 0.82 

NCEP R2 0.86 0.84 0.98 0.78 1.00 0.85 0.86 

MERRA-2 0.90 0.89 0.84 0.77 0.85 1.00 0.85 

Mean 0.89 0.88 0.86 0.82 0.86 0.85 - 

Table A4. R-value matrix describing the level of satellite era reanalysis agreement over the four study 1000 
regions analyzed. 1001 

 1002 

 1003 

 1004 



Table A5. R-value matrix describing the level of reanalysis agreement to each independent precipitation 1005 
dataset over the four study regions for the common period (1980-2020). 1006 

Reanalysis Precipitation Variable R-values Matrix – 1980-2020 
Equatorial Africa 

 JRA55 ERA5 
NCEP 

R1 
CFSR/v2 

NCEP 

R2 
MERRA-2 CMAP GPCP Mean 

JRA55 1.00 0.57 0.25 0.32 0.19 0.57 0.11 0.18 0.31 

ERA5 0.57 1.00 0.25 0.33 0.26 0.73 0.56 0.65 0.48 

NCEP R1 0.25 0.25 1.00 0.61 0.81 0.31 0.22 0.32 0.40 

CFSR/v2 0.32 0.33 0.61 1.00 0.53 0.44 0.38 0.47 0.44 

NCEP R2 0.19 0.26 0.81 0.53 1.00 0.40 0.25 0.33 0.40 

MERRA-2 0.57 0.73 0.31 0.44 0.40 1.00 0.45 0.50 0.49 

CMAP 0.11 0.56 0.22 0.38 0.25 0.45 1.00 0.83 0.40 

GPCP 0.18 0.65 0.32 0.47 0.33 0.50 0.83 1.00 0.47 

Mean 0.31 0.48 0.40 0.44 0.40 0.49 0.40 0.47 - 

Amazon Basin 

 JRA55 ERA5 
NCEP 

R1 
CFSR/v2 

NCEP 

R2 
MERRA-2 CMAP GPCP Mean 

JRA55 1.00 0.85 0.26 0.75 0.22 0.78 0.84 0.85 0.65 

ERA5 0.85 1.00 0.29 0.80 0.33 0.85 0.87 0.90 0.70 

NCEP R1 0.26 0.29 1.00 0.18 0.57 0.31 0.17 0.21 0.28 

CFSR/v2 0.75 0.80 0.18 1.00 0.33 0.77 0.81 0.84 0.64 

NCEP R2 0.22 0.33 0.57 0.33 1.00 0.36 0.28 0.31 0.34 

MERRA-2 0.78 0.85 0.31 0.77 0.36 1.00 0.80 0.84 0.67 

CMAP 0.84 0.87 0.17 0.81 0.28 0.80 1.00 0.96 0.68 

GPCP 0.85 0.90 0.21 0.84 0.31 0.84 0.96 1.00 0.70 

Mean 0.65 0.70 0.28 0.64 0.34 0.67 0.68 0.70 - 

Equatorial Central Pacific 

 JRA55 ERA5 
NCEP 

R1 
CFSR/v2 

NCEP 

R2 
MERRA-2 CMAP GPCP Mean 

JRA55 1.00 0.90 0.65 0.86 0.64 0.85 0.82 0.84 0.79 

ERA5 0.90 1.00 0.53 0.90 0.61 0.85 0.83 0.89 0.79 

NCEP R1 0.65 0.53 1.00 0.57 0.68 0.59 0.67 0.62 0.62 

CFSR/v2 0.86 0.90 0.57 1.00 0.61 0.81 0.80 0.84 0.77 

NCEP R2 0.64 0.61 0.68 0.61 1.00 0.55 0.56 0.59 0.61 

MERRA-2 0.85 0.85 0.59 0.81 0.55 1.00 0.85 0.85 0.76 

CMAP 0.82 0.83 0.67 0.80 0.56 0.85 1.00 0.93 0.78 

GPCP 0.84 0.89 0.62 0.84 0.59 0.85 0.93 1.00 0.79 

Mean 0.79 0.79 0.62 0.77 0.61 0.76 0.78 0.79 - 

Equatorial Indonesia 

 JRA55 ERA5 
NCEP 

R1 
CFSR/v2 

NCEP 

R2 
MERRA-2 CMAP GPCP Mean 

JRA55 1.00 0.90 0.69 0.75 0.67 0.74 0.81 0.83 0.77 

ERA5 0.90 1.00 0.66 0.80 0.65 0.86 0.88 0.92 0.81 

NCEP R1 0.69 0.66 1.00 0.64 0.81 0.53 0.50 0.54 0.62 

CFSR/v2 0.75 0.80 0.64 1.00 0.59 0.68 0.74 0.80 0.71 

NCEP R2 0.67 0.65 0.81 0.59 1.00 0.54 0.47 0.53 0.61 

MERRA-2 0.74 0.86 0.53 0.54 0.54 1.00 0.79 0.80 0.69 

CMAP 0.81 0.88 0.50 0.74 0.47 0.79 1.00 0.94 0.73 

GPCP 0.83 0.92 0.54 0.80 0.53 0.80 0.94 1.00 0.77 

Mean 0.77 0.81 0.62 0.71 0.61 0.69 0.73 0.77 - 



Reanalysis Precipitation Variable R-values Matrix – 1959-2016 (Full Period Only) 
Equatorial Africa 

 JRA55 ERA5 NCEP R1 GPCC 

JRA55 1.00 0.54 -0.10 0.06 

ERA5 0.54 1.00 0.08 0.39 

NCEP R1 -0.10 0.08 1.00 0.40 

GPCC 0.06 0.39 0.40 1.00 

Amazon Basin 

 JRA55 ERA5 NCEP R1 GPCC 

JRA55 1.00 0.66 0.29 0.74 

ERA5 0.66 1.00 0.26 0.74 

NCEP R1 0.29 0.26 1.00 0.16 

GPCC 0.74 0.74 0.16 1.00 

Equatorial Central Pacific 

 JRA55 ERA5 NCEP R1 GPCC 

JRA55 1.00 0.78 0.47 N/A 

ERA5 0.78 1.00 0.27 N/A 

NCEP R1 0.47 0.27 1.00 N/A 

GPCC N/A N/A N/A N/A 

Equatorial Indonesia 

 JRA55 ERA5 NCEP R1 GPCC 

JRA55 1.00 0.77 0.54 0.66 

ERA5 0.77 1.00 0.54 0.80 

NCEP R1 0.54 0.54 1.00 0.42 

GPCC 0.66 0.80 0.42 1.00 

Table A6. R-value matrix describing the level of full period reanalysis agreement to the GPCC 1007 
precipitation dataset over the four study regions (1959-2016). 1008 
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Table A7. R-value matrix describing the level of reanalysis agreement to each independent outgoing 1018 
longwave radiation dataset over the four study regions for the common period (1980-2020). 1019 

Reanalysis Outgoing Longwave Radiation Variable R-values Matrix – 1980-2020 

Equatorial Africa 

 JRA55 ERA5 
NCEP 

R1 

CFSR/

v2 

NCEP 

R2 
MERRA-2 NOAA HIRS Mean 

JRA55 1.00 0.61 0.57 0.22 0.19 0.27 0.01 0.50 0.34 

ERA5 0.61 1.00 0.52 0.02 0.02 0.21 0.04 0.82 0.32 

NCEP R1 0.57 0.52 1.00 0.10 0.35 0.23 0.08 0.58 0.35 

CFSR/v2 0.22 0.02 0.10 1.00 0.52 0.62 0.56 0.00 0.29 

NCEP R2 0.19 0.02 0.35 0.52 1.00 0.52 0.43 0.03 0.29 

MERRA-2 0.27 0.21 0.23 0.62 0.52 1.00 0.61 0.10 0.37 

NOAA 0.01 0.04 0.08 0.56 0.43 0.61 1.00 0.08 0.26 

HIRS 0.50 0.82 0.58 0.00 0.03 0.10 0.08 1.00 0.30 

Mean 0.34 0.32 0.35 0.29 0.29 0.37 0.26 0.30 - 

Amazon Basin 

 JRA55 ERA5 
NCEP 

R1 

CFSR/

v2 

NCEP 

R2 
MERRA-2 NOAA HIRS Mean 

JRA55 1.00 0.80 0.31 0.19 -0.05 0.25 0.21 0.80 0.36 

ERA5 0.80 1.00 0.48 0.21 0.19 0.29 0.29 0.91 0.45 

NCEP R1 0.31 0.48 1.00 0.18 0.57 0.35 0.28 0.51 0.38 

CFSR/v2 0.19 0.21 0.18 1.00 0.53 0.55 0.77 0.23 0.38 

NCEP R2 -0.05 0.19 0.57 0.53 1.00 0.49 0.54 0.24 0.36 

MERRA-2 0.25 0.29 0.35 0.55 0.49 1.00 0.71 0.32 0.42 

NOAA 0.21 0.29 0.28 0.77 0.54 0.71 1.00 0.33 0.45 

HIRS 0.80 0.91 0.51 0.24 0.24 0.32 0.33 1.00 0.48 

Mean 0.36 0.45 0.38 0.38 0.36 0.42 0.45 0.48 - 

Equatorial Central Pacific 

 JRA55 ERA5 
NCEP 

R1 

CFSR/

v2 

NCEP 

R2 
MERRA-2 NOAA HIRS Mean 

JRA55 1.00 0.89 0.57 0.57 0.28 0.55 0.51 0.83 0.60 

ERA5 0.89 1.00 0.62 0.65 0.34 0.63 0.69 0.95 0.68 

NCEP R1 0.57 0.62 1.00 0.36 0.40 0.49 0.53 0.70 0.52 

CFSR/v2 0.57 0.65 0.36 1.00 0.47 0.81 0.85 0.61 0.62 

NCEP R2 0.28 0.34 0.40 0.47 1.00 0.50 0.55 0.40 0.42 

MERRA-2 0.55 0.63 0.49 0.81 0.50 1.00 0.83 0.66 0.64 

NOAA 0.51 0.69 0.53 0.85 0.55 0.83 1.00 0.72 0.67 

HIRS 0.83 0.95 0.70 0.61 0.40 0.66 0.72 1.00 0.70 

Mean 0.60 0.68 0.52 0.62 0.42 0.64 0.67 0.70 - 

Equatorial Indonesia 

 JRA55 ERA5 
NCEP 

R1 

CFSR/

v2 

NCEP 

R2 
MERRA-2 NOAA HIRS Mean 

JRA55 1.00 0.95 0.75 0.31 0.39 0.47 0.41 0.91 0.60 

ERA5 0.95 1.00 0.80 0.31 0.39 0.42 0.41 0.95 0.60 

NCEP R1 0.75 0.80 1.00 0.29 0.40 0.33 0.31 0.77 0.52 

CFSR/v2 0.31 0.31 0.29 1.00 0.78 0.68 0.77 0.27 0.49 

NCEP R2 0.39 0.39 0.40 0.78 1.00 0.85 0.78 0.33 0.55 

MERRA-2 0.47 0.42 0.33 0.68 0.76 1.00 0.79 0.40 0.55 

NOAA 0.41 0.41 0.31 0.77 0.78 0.79 1.00 0.41 0.55 

HIRS 0.91 0.95 0.77 0.27 0.33 0.40 0.41 1.00 0.58 

Mean 0.60 0.60 0.52 0.49 0.55 0.55 0.55 0.58 1.00 


