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* Open-ocean MCS initiations are mainly triggered by gravity waves
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Offshore MCS initiation: near-coast initiations are mainly triggered
by land breeze, while open-ocean initiations are mainly triggered by
the gravity waves from Andes and Talamanca range.

Further research on MCS initiation triggered by gravity waves will be
conducted though numerical modeling.

(b) rainfall from MCS coast (orange scatters in Fig. 5).
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