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-4K CTL +4K

SST_max (℃) 23 27 31

Aquaplanet version of CAM6 with 

prescribed zonally symmetric SST Response of convectively 
coupled Kelvin waves 
(KWs) to surface warming 
and cooling
in aquaplanet simulations

- Run for 12 years, use the later 10 years for analysis.

- 1.9˚ lat × 2.5˚ lon

- Deep convection scheme: Zhang and McFarlane (1999). 

- Shallow convection scheme: Cloud Layers Unified by 

Binormals (CLUBB).

(Chien and Kim, submitted)



KWs weaken and accelerate with warming

3(Chien and Kim, submitted)

Normalized power spectrum of precipitation anomalies (signal strength)

KW band



Weakening and acceleration of KWs are associated 
with weaker coupling between the first and 
second baroclinic modes

4(Chien and Kim, submitted)

Why does the coupling between the two modes weaken? 

What controls the coupling?

1st baroclinic mode

2nd baroclinic mode

Coherence squared between first and second baroclinic modes

KW band



Research objectives: 

Investigate how the first and second baroclinic 
modes are coupled within KWs using aquaplanet
simulations.
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Hypothesize why the coupling between the two 
modes may weaken with warming which lead to 
the weakening and acceleration of KWs.



Method: KW composite
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Enhanced

Suppressed

EarlierLater



Previous theories on the two-mode coupling 
not consistent with our simulations
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Mapes (2000)

Low 

CIN

Deep convection is triggered 

when convective inhibition 

(CIN) is lowest.

Stratiform heating lags deep 

convection by 3 hours.

Phase Lag between precipitation and 

CIN suggests our simulation results do 

not fully match this model.



Previous theories on the two-mode coupling 
not consistent with our simulations
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Kuang (2008)

Moist Dry

Deep convection is triggered when 

lower tropospheric temperature 

decreases (quasi-equilibrium is 

perturbed). 

Mid-tropospheric moisture 

determines the depth of convection.

Phase Lag between deep convection 

and the temperature tendency of the 

second mode suggests our simulation 

results do not match this model.

W

C

C

W

W: Warm anomalies

C: Cold anomoalies

Shading: Diabatic heating

KW composite 1st mode diabatic 

heating (shading) and 2nd mode 

temperature (contours) in -4K



Previous theories on the two-mode coupling 
not consistent with our simulations
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Khouider and Majda (2006)

Lag time

Moist Dry

Convection occurs when the 

midtroposphere is moist.

Moistening of congestus 

cloud is essential.

Congestus cloud 

moistening the 

environment Precipitation is most strongly correlated 

with lower tropospheric moisture (750-

850 hPa) in our simulations.

Correlation coefficient between q and precip

Correlation coefficient



Previous theories on the two-mode coupling 
not consistent with our simulations
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Lag time

Moist Dry

Congestus cloud 

moistening the 

environment 

Khouider and Majda (2006)

Convection occurs when the 

midtroposphere is moist.

Moistening of congestus 

cloud is essential.

Precipitation is most strongly correlated 

with lower tropospheric moisture (750-

850 hPa) in our simulations.



Moisture 
increases in the 
free troposphere 
follows the 
increases in the 
boundary layer
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Shading: Specific humidity

-4K

LF



Moisture 
increases in the 
free troposphere 
follows the 
increases in the 
boundary layer
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Shading: Specific humidity

BL

LF

-4K



Moisture 
increases in the 
free troposphere 
follows the 
increases in the 
boundary layer
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Shading: Specific humidity
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Boundary layer 
moisture comes 
from 
evaporation
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Shading: 

Specific humidity tendency 
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Boundary layer 
moisture comes 
from 
evaporation

15

Shading: 

Specific humidity tendency 
𝜕𝑞

𝜕𝑡

Contour: -Q2

-4K +4K

BLBLBL

𝜕𝑞

𝜕𝑡
= −𝑢

𝜕𝑞

𝜕𝑥
− 𝑣

𝜕𝑞

𝜕𝑦
− 𝜔

𝜕𝑞

𝜕𝑝
− Q2

Apparent moisture 

source (Yanai 1973)

𝜕𝑞 /𝜕𝑡



Boundary layer 
moisture comes 
from 
evaporation
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Lower free 
tropospheric 
moisture comes 
from vertical 
advection
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Lower free 
tropospheric 
moisture comes 
from vertical 
advection
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Vertical 
advection of 
moisture is 
associated with 
shallow 
convection
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Shading: Diabatic heating from 

shallow convection scheme
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Hypothesis on how the two modes are coupled 
and why the coupling weakens with warming
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- Precipitation is in quasi-

equilibrium with lower 

tropospheric moisture.

- Lower tropospheric 

moisture mostly comes from 

vertical transport from the 

boundary layer associated 

with shallow convection.

- Shallow convection 

weakens in a warmer 

climate, likely related to 

the rise of the melting level.

-4K +4K

Q (K/day)



Summary, future work, and implications
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1. We found that shallow convection which transports moisture upward from the 

boundary layer to the lower free troposphere is a key to the coupling 

between the first and second baroclinic modes. Weaker shallow convection in 

a warmer climate may be responsible for the decoupling of the two modes, 

which leads to the weakening and acceleration of KWs. 

2. To test our hypothesis, we will run numerical experiments with nudging of 

moisture and temperature to the climatology in -4K.

3. Shallow convection moistening is neglected in previous simple models of KWs. 

We may need to incorporate this process in the simple model.
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